
Deploying
DNSSEC
Using BIND 9.7

Internet Systems
Consortium

Deck Version 1.4

About the Presenter

•Alan Clegg

aclegg@isc.org

+1-919-355-8851

@Knobee

About ISC

• Internet Systems Consortium, Inc.
– Headquartered in Redwood City, CA
– 501(c)(3) Nonprofit Corporation

• ISC is a public benefit corporation dedicated to
supporting the infrastructure of the universal
connected self-organizing Internet — and the
autonomy of its participants — by developing and
maintaining core production quality software,
protocols, and operations.

Understanding
DNSSEC

Introduction

• Contemplate for a moment the
amount of trust that we put into the
DNS infrastructure

• If DNS were to suddenly become
unreliable or untrustworthy, what
would the result be?

Introduction

• With millions of recursive, caching
servers on the Internet…

– Each one needs to be able to be able to
look up data from millions of zones

– There is no way to distribute secret keys

• Existing technology (TSIG) did not scale well

Introduction

• Central concept:

DNS data is augmented by a signature

• Validating resolvers can use the
signature to verify that the data is
authentic

Introduction

• DNSSEC is based on public key
(asymmetrical) cryptography
–Private key is used to sign DNS data
–Public key is published via DNS so that

validators can retrieve it
– The public key is then used to validate

the signatures, and there-by, the DNS
data

Introduction

• DNSSEC provides cryptographic
proof that the data received in
response to a query is un-modified

• It does not deal with validating
dynamic updates, nor with master to
slave data transfers

Introduction

• DNSSEC enabled authoritative
servers provide digital signatures
across RRsets in addition to
"standard" DNS responses

• DNSSEC validating resolvers provide
authenticated responses with proven
integrity

Introduction

• Clients using validating resolvers get
"guaranteed good" results

• Data that does not validate provides
a "SERVFAIL" response from the
upstream resolver

Trust Validation

• With this knowledge, we are able to
prove that data hasn't changed
between the authoritative server and
the validator, but how do we know
we can trust it?

• Now that the root (".") is signed,
that's easy, right?

Trust Validation

• DNSSEC is based on chains of trust

• At the top of chains are "trust-
anchors"
–One (signed) root, one trust-anchor
–Until all TLDs are signed, it's not so easy
–Trust anchors must be gathered and

added to DNS configuration through
leaps of faith

Trust Validation

• In BIND, trust anchors are added in
"trusted-keys" statements

trusted-keys {
 . 257 3 8 "AwEAA[..]ihz0=";
};

• This creates an anchor based at the
DNS root from which a chain is
created

Chain of Trust

• Once a "trust anchor" is inserted,
how does it actually create trust that
leads down the DNS tree?

• Trust anchors consist of bits capable
of validating the key used to sign the
key that signs data in a given zone

Chain of Trust

• First, we must realize that there are
TWO keys inserted into each zone

–Zone Signing Key (ZSK)
• Used to sign the resource records in the

zone being secured
–Key Signing Key (KSK)

• Used to sign the Zone Signing Key

Chain of Trust

• Delegation of signed zones include a
new Resource Record type

–Delegation Signer – DS

–Hash of the public portion of the child's
Key Signing Key

Chain of Trust

• If the DS record in the parent is
signed using the parent's zone
signing key, we know that the DS
record is valid.

• If the hash of the child's Key Signing
Key record matches the DS record
then we know that the Key Signing
Key is valid.

Chain of Trust

• If the Key Signing Key is known to
be valid, its signature of the Zone
Signing Key proves that the Zone
Signing Key is valid.

• If the Zone Signing Key is known to
be valid, it can be used to validate
other RRs in the zone.

Chain of Trust

• A living example:

www.isc.org

The following slides were created using Sandia National Laboratories "DNSViz"

http://dnsviz.net/

Trusting isc.org
. (root)

–KSK 19036

–ZSK 41248
• Signed w/19036

– .org DS records
• signed w/ 41248

Trusting isc.org
.org

–KSK 21366

–ZSK 05919
• Signed w/21366

– isc.org DS records
• signed w/ 05919

Trusting isc.org
isc.org

–KSK 12892
• Hashed into DS

–ZSK 18516
• Signed w/ 12892

–SOA, AAAA, A
• Signed w/ 18516

Trusting isc.org
• With a trust

anchor for root
we can trust
anything below
it that is signed

–And that has DS
records in place

DNSSEC
Deployment

BIND 9.7

Recursive
Server

Trust Validation

• In BIND, trust anchors are added in
"trusted-keys" statements

trusted-keys {
 . 257 3 8 "AwEAA[..]ihz0=";
};

• But, what happens when a "hard-
configured" key changes?

RFC-5011 ready anchors

• Be ready for KSK roll-over:

managed-keys {
 "." initial-key 257 3 8

"AwEAA[..]k1ihz0=";
};

• Defines the initial key used as KSK
for the given zone

RFC-5011 ready anchors

• A file is created that tracks key
changes

managed-keys.bind
managed-keys.bind.jnl

• This file will contain the currently
active key, even if the configured
key has rolled

RFC-5011 ready anchors

• Newly added "rndc secroots"

–Creates a file "named.secroots"
containing a list of the current managed
keys that are in use:

10-Sep-2010 12:56:08.950

 Start view _default

./RSASHA256/19036 ; managed
dlv.isc.org/RSASHA1/19297 ; managed

RFC-5011 ready anchors

• One problem with managed-keys:

– If a key has rolled without being
noticed, validation will fail

– This can happen if a validating server is
off-line during a key roll-over, etc.

Authoritative
Server

DNSSEC Deployment

• Generate required keys
–dnssec-keygen

• Insert them into the zone
–manual (or dynamic)

• Sign zone data
–dnssec-signzone (or dynamic)

• Perform scheduled zone maintenance
–manual (or dynamic)

DNSSEC Deployment

• dnssec-keygen

–Used to create the required keys

•Key Signing Key
•Zone Signing Key

DNSSEC Deployment

• dnssec-keygen

–Defaults algorithm to RSASHA1

–Provides defaults for key size if default
algorithm is used:
• KSK – 2048 bits
• ZSK – 1024 bits

DNSSEC Deployment

• dnssec-keygen <zonename>
• dnssec-keygen -f KSK <zonename>

• Produces 2 files per key

K<zonename>+XXX+YYYY.key
K<zonename>+XXX+YYYY.private

DNSSEC Deployment

• dnssec-keygen

–Once keys are created, include their
public portions (.key) into the zone file
using standard procedures

–Keep the .private portions secure

DNSSEC Deployment

• dnssec-signzone

–Signs the zone data

• Creates RRSIG resource records for each
authoritative RRset in the zone

• Transforms zone into "machine generated"
file with a .signed extension

DNSSEC Deployment

• dnssec-signzone

–BIND 9.7 introduced a new feature..

• Smart Signing
– Looks in key repository (directory) for keys
– Keys are included in zone automatically
– If key files contain timing meta-data, that timing

data is used

DNSSEC Deployment

• named

–New dynamic zone configuration

• update-policy local;
– Automatically creates "local-only" TSIG key

• Allows BIND to update without complex
configuration

DNSSEC Deployment

• named

–New zone options for dynamic zones
• auto-dnssec off;

– Default

• auto-dnssec allow;
– Enables auto-inclusion of keys from repository
– Enables "rndc sign"

• auto-dnssec maintain;
– Update DNSSEC based on key meta-data

DNSSEC Deployment

• nsupdate

–New option -l (ell)

• Use the named created "local key"

• Set the server address to localhost

DNSSEC Deployment

• rndc

–New option sign

• Takes a dynamic zone, searches for keys in
the key repository and signs the zone as
needed.

Making it work...

zone test.com {
 type master;
 key-directory "keys";
 update-policy local;
 auto-dnssec maintain;
 file "dynamic/test.com.zone";
};

Making it work...

dnssec-keygen -K /etc/namedb/keys \
 test.com
dnssec-keygen -f KSK -K /etc/namedb/keys \
 test.com
rndc sign test.com

Zone is now signed and published

Zone will be automatically re-signed as needed

DNSSEC "just works"

• Adding or removing zone contents is
now as simple as:

nsupdate -l
> update add <RRset>
> send

• RRset is added and signed data
updated automatically

Timing Meta-Data

• dnssec-keygen creates meta-data in
the key file:

-P – Publication Date (default: now)
-A – Activation Date (now)
-R – Revocation Date (none)
-I – retIrement Date (none)
-D – Deletion Date (none)

Timing Meta-Data

• These dates are used by named to
maintain the zone signatures

• Date formats:
none (literal)
YYYYMMDD
YYYYMMDDHHMMSS
now+<offset>

y, mo, w, d, h, mi

Timing Meta-Data

• To pre-publish a KSK without
signing:

dnssec-keygen -K keydir \
-f ksk -A none test.com

[...]Ktest.com.+005+11353

rndc sign test.com

Timing Meta-Data

• Once you are ready to sign the zone
with the given key:

dnssec-settime -K keydir \
-A now Ktest.com.+005+11353

rndc sign test.com

Timing Meta-Data

• To no-longer sign with the key, but
leave it in the zone:

dnssec-settime -K keydir \
-I now Ktest.com.+005+11353

rndc sign test.com

Timing Meta-Data

• And finally, remove the key from the
zone:

dnssec-settime -K keydir \
-D now Ktest.com.+005+11353

rndc sign test.com

Automation Warning!

Be aware that this automation does
NOT deal with DS records in the parent

or DLV records in a registry

DNSSEC Deployment

• BIND 9.7.2
(currently [9/1/2010] release candidate)

allow-new-zones option
• boolean allowing creation of zones "on the

fly"

rndc addzone / rndc delzone
• add and remove zones without manually

editing named.conf

Create & Sign a zone
#!/bin/bash
cd /etc/namedb
cp template master/${1}

rndc addzone ${1} { type master\;\
 file \"master/${1}\"\;\
 update-policy local\; \
 auto-dnssec maintain\; \
 }\;

dnssec-keygen -f KSK -K /etc/namedb/keys $1
dnssec-dsfromkey -2 /etc/namedb/keys/K${1}.*.key > ds/${1}
dnssec-keygen -K /etc/namedb/keys $1
rndc sign ${1}

Create & Sign (NSEC3)
#!/bin/bash
SALT=`printf %04x%04x $RANDOM $RANDOM`
cd /etc/namedb
cp template master/${1}

rndc addzone ${1} { [..] };

nsupdate -l << //EOF
update add ${1} 30 IN NSEC3PARAM 1 0 10 $SALT

//EOF
dnssec-keygen -3 -f KSK -K /etc/namedb/keys $1
dnssec-dsfromkey -2 /etc/namedb/keys/K${1}.*.key > ds/${1}
dnssec-keygen -3 -K /etc/namedb/keys $1
rndc sign ${1}

Questions?
Comments?

Ready to deploy?

