
RFC 0000
Internet Message Access Protocol (IMAP) - Version
4rev2

Abstract
The Internet Message Access Protocol, Version 4rev2 (IMAP4rev2) allows a client to access and
manipulate electronic mail messages on a server. IMAP4rev2 permits manipulation of mailboxes
(remote message folders) in a way that is functionally equivalent to local folders. IMAP4rev2 also
provides the capability for an offline client to resynchronize with the server.

IMAP4rev2 includes operations for creating, deleting, and renaming mailboxes, checking for new
messages, permanently removing messages, setting and clearing flags, RFC 5322, RFC 2045 and
RFC 2231 parsing, searching, and selective fetching of message attributes, texts, and portions
thereof. Messages in IMAP4rev2 are accessed by the use of numbers. These numbers are either
message sequence numbers or unique identifiers.

IMAP4rev2 does not specify a means of posting mail; this function is handled by a mail
submission protocol such as the one specified in RFC 6409.

Stream: Internet Engineering Task Force (IETF)
RFC: 0000
Obsoletes: 3501
Category: Standards Track
Published: February 2021
ISSN: 2070-1721
Authors: A. Melnikov, Ed.

Isode Ltd.
B. Leiba, Ed.
Futurewei Technologies

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc0000

Melnikov & Leiba Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc0000
https://www.rfc-editor.org/rfc/rfc3501
https://www.rfc-editor.org/info/rfc0000

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

https://trustee.ietf.org/license-info

Table of Contents
1. How to Read This Document

1.1. Organization of This Document

1.2. Conventions Used in This Document

1.3. Special Notes to Implementors

2. Protocol Overview

2.1. Link Level

2.2. Commands and Responses

2.2.1. Client Protocol Sender and Server Protocol Receiver

2.2.2. Server Protocol Sender and Client Protocol Receiver

2.3. Message Attributes

2.3.1. Message Numbers

2.3.2. Flags Message Attribute

2.3.3. Internal Date Message Attribute

2.3.4. [RFC-5322] Size Message Attribute

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 2

https://trustee.ietf.org/license-info

2.3.5. Envelope Structure Message Attribute

2.3.6. Body Structure Message Attribute

2.4. Message Texts

3. State and Flow Diagram

3.1. Not Authenticated State

3.2. Authenticated State

3.3. Selected State

3.4. Logout State

4. Data Formats

4.1. Atom

4.1.1. Sequence set and UID set

4.2. Number

4.3. String

4.3.1. 8-bit and Binary Strings

4.4. Parenthesized List

4.5. NIL

5. Operational Considerations

5.1. Mailbox Naming

5.1.1. Mailbox Hierarchy Naming

5.1.2. Namespaces

5.2. Mailbox Size and Message Status Updates

5.3. Response when no Command in Progress

5.4. Autologout Timer

5.5. Multiple Commands in Progress (Command Pipelining)

6. Client Commands

6.1. Client Commands - Any State

6.1.1. CAPABILITY Command

6.1.2. NOOP Command

6.1.3. LOGOUT Command

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 3

6.2. Client Commands - Not Authenticated State

6.2.1. STARTTLS Command

6.2.2. AUTHENTICATE Command

6.2.3. LOGIN Command

6.3. Client Commands - Authenticated State

6.3.1. ENABLE Command

6.3.2. SELECT Command

6.3.3. EXAMINE Command

6.3.4. CREATE Command

6.3.5. DELETE Command

6.3.6. RENAME Command

6.3.7. SUBSCRIBE Command

6.3.8. UNSUBSCRIBE Command

6.3.9. LIST Command

6.3.10. NAMESPACE Command

6.3.11. STATUS Command

6.3.12. APPEND Command

6.3.13. IDLE Command

6.4. Client Commands - Selected State

6.4.1. CLOSE Command

6.4.2. UNSELECT Command

6.4.3. EXPUNGE Command

6.4.4. SEARCH Command

6.4.5. FETCH Command

6.4.6. STORE Command

6.4.7. COPY Command

6.4.8. MOVE Command

6.4.9. UID Command

6.5. Client Commands - Experimental/Expansion

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 4

7. Server Responses

7.1. Server Responses - Generic Status Responses

7.1.1. OK Response

7.1.2. NO Response

7.1.3. BAD Response

7.1.4. PREAUTH Response

7.1.5. BYE Response

7.2. Server Responses - Server Status

7.2.1. ENABLED Response

7.2.2. CAPABILITY Response

7.3. Server Responses - Mailbox Status

7.3.1. LIST Response

7.3.2. NAMESPACE Response

7.3.3. STATUS Response

7.3.4. ESEARCH Response

7.3.5. FLAGS Response

7.4. Server Responses - Mailbox Size

7.4.1. EXISTS Response

7.5. Server Responses - Message Status

7.5.1. EXPUNGE Response

7.5.2. FETCH Response

7.6. Server Responses - Command Continuation Request

8. Sample IMAP4rev2 connection

9. Formal Syntax

10. Author's Note

11. Security Considerations

11.1. TLS related Security Considerations

11.2. STARTTLS command versa use of Implicit TLS port

11.3. Client handling of unsolicited responses not suitable for the current connection state

11.4. COPYUID and APPENDUID response codes

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 5

1. How to Read This Document

1.1. Organization of This Document
This document is written from the point of view of the implementor of an IMAP4rev2 client or
server. Beyond the protocol overview in section 2, it is not optimized for someone trying to
understand the operation of the protocol. The material in sections 3 through 5 provides the
general context and definitions with which IMAP4rev2 operates.

11.5. LIST command and Other Users' namespace

11.6. Use of MD5

11.7. Other Security Considerations

12. IANA Considerations

12.1. Updates to IMAP4 Capabilities registry

12.2. GSSAPI/SASL service name

12.3. LIST Selection Options, LIST Return Options, LIST extended data items

12.4. IMAP Mailbox Name Attributes and IMAP Response Codes

13. References

13.1. Normative References

13.2. Informative References (related protocols)

13.3. Informative References (historical aspects of IMAP and related protocols)

Appendix A. Backward compatibility with IMAP4rev1

A.1. Mailbox International Naming Convention for compatibility with IMAP4rev1

Appendix B. Backward compatibility with BINARY extension

Appendix C. Backward compatibility with LIST-EXTENDED extension

Appendix D. 63 bit body part and message sizes

Appendix E. Changes from RFC 3501 / IMAP4rev1

Appendix F. Other Recommended IMAP Extensions

Appendix G. Acknowledgement

Authors' Addresses

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 6

Sections 6, 7, and 9 describe the IMAP commands, responses, and syntax, respectively. The
relationships among these are such that it is almost impossible to understand any of them
separately. In particular, do not attempt to deduce command syntax from the command section
alone; instead refer to the Formal Syntax (Section 9).

1.2. Conventions Used in This Document
"Conventions" are basic principles or procedures. Document conventions are noted in this
section.

In examples, "C:" and "S:" indicate lines sent by the client and server respectively. Note that each
line includes the terminating CRLF.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The word "can" (not "may") is used to refer to a possible circumstance or situation, as opposed to
an optional facility of the protocol.

"User" is used to refer to a human user, whereas "client" refers to the software being run by the
user.

"Connection" refers to the entire sequence of client/server interaction from the initial
establishment of the network connection until its termination.

"Session" refers to the sequence of client/server interaction from the time that a mailbox is
selected (SELECT or EXAMINE command) until the time that selection ends (SELECT or EXAMINE
of another mailbox, CLOSE command, UNSELECT command, or connection termination).

The term "Implicit TLS" refers to the automatic negotiation of TLS whenever a TCP connection is
made on a particular TCP port that is used exclusively by that server for TLS connections. The
term "Implicit TLS" is intended to contrast with the use of STARTTLS command in IMAP that is
used by the client and the server to explicitly negotiate TLS on an established cleartext TCP
connection.

Characters are 8-bit UTF-8 (of which 7-bit US-ASCII is a subset) unless otherwise specified. Other
character sets are indicated using a "CHARSET", as described in and defined in

. CHARSETs have important additional semantics in addition to defining character set;
refer to these documents for more detail.

There are several protocol conventions in IMAP. These refer to aspects of the specification which
are not strictly part of the IMAP protocol, but reflect generally-accepted practice.
Implementations need to be aware of these conventions, and avoid conflicts whether or not they

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[MIME-IMT]
[CHARSET]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 7

implement the convention. For example, "&" may not be used as a hierarchy delimiter since it
conflicts with the Mailbox International Naming Convention, and other uses of "&" in mailbox
names are impacted as well.

1.3. Special Notes to Implementors
Implementors of the IMAP protocol are strongly encouraged to read the IMAP implementation
recommendations document in conjunction with this document, to
help understand the intricacies of this protocol and how best to build an interoperable product.

IMAP4rev2 is designed to be upwards compatible from the IMAP4rev1 , the
and unpublished IMAP2bis protocols. IMAP4rev2 is largely compatible with the
IMAP4rev1 protocol described in RFC 3501 and the IMAP4 protocol described in RFC 1730; the
exception being in certain facilities added in RFC 1730 and RFC 3501 that proved problematic
and were subsequently removed or replaced by better alternatives. In the course of the evolution
of IMAP4rev2, some aspects in the earlier protocols have become obsolete. Obsolete commands,
responses, and data formats which an IMAP4rev2 implementation can encounter when used
with an earlier implementation are described in Appendix E, Appendix A and .
IMAP4rev2 supports 63bit body part and message sizes. IMAP4rev2 compatibility with BINARY
and LIST-EXTENDED IMAP extensions are described in Appendix B and Appendix C respectively.

Other compatibility issues with IMAP2bis, the most common variant of the earlier protocol, are
discussed in . A full discussion of compatibility issues with rare (and presumed
extinct) variants of is in ; this document is primarily of historical
interest.

IMAP was originally developed for the older standard, and as a consequence,
"RFC822.SIZE" fetch item in IMAP incorporates "RFC822" in its name. "RFC822" should be
interpreted as a reference to the updated standard.

2. Protocol Overview

2.1. Link Level
The IMAP4rev2 protocol assumes a reliable data stream such as that provided by TCP. When TCP
is used, an IMAP4rev2 server listens on port 143 (cleartext port) or port 993 (Implicit TLS port).

2.2. Commands and Responses
An IMAP4rev2 connection consists of the establishment of a client/server network connection, an
initial greeting from the server, and client/server interactions. These client/server interactions
consist of a client command, server data, and a server completion result response.

All interactions transmitted by client and server are in the form of lines, that is, strings that end
with a CRLF. The protocol receiver of an IMAP4rev2 client or server is either reading a line, or is
reading a sequence of octets with a known count followed by a line.

[IMAP-IMPLEMENTATION]

[RFC3501] [IMAP2]
[IMAP2BIS]

[IMAP-OBSOLETE]

[IMAP-COMPAT]
[IMAP2] [IMAP-HISTORICAL]

[RFC-822]

[RFC-5322]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 8

2.2.1. Client Protocol Sender and Server Protocol Receiver

The client command begins an operation. Each client command is prefixed with an identifier
(typically a short alphanumeric string, e.g., A0001, A0002, etc.) called a "tag". A different tag is
generated by the client for each command. More formally: the client generate a unique
tag for every command, but a server accept tag reuse.

Clients follow the syntax outlined in this specification strictly. It is a syntax error to send a
command with missing or extraneous spaces or arguments.

There are two cases in which a line from the client does not represent a complete command. In
one case, a command argument is quoted with an octet count (see the description of literal in
Section 4.3); in the other case, the command arguments require server feedback (see the
AUTHENTICATE command in Section 6.2.2). In either case, the server sends a command
continuation request response if it is ready for the octets (if appropriate) and the remainder of
the command. This response is prefixed with the token "+".

Note: If, instead, the server detected an error in the command, it sends a BAD completion
response with a tag matching the command (as described below) to reject the command and
prevent the client from sending any more of the command.

It is also possible for the server to send a completion response for some other command (if
multiple commands are in progress), or untagged data. In either case, the command
continuation request is still pending; the client takes the appropriate action for the response,
and reads another response from the server. In all cases, the client send a complete
command (including receiving all command continuation request responses and sending
command continuations for the command) before initiating a new command.

The protocol receiver of an IMAP4rev2 server reads a command line from the client, parses the
command and its arguments, and transmits server data and a server command completion result
response.

2.2.2. Server Protocol Sender and Client Protocol Receiver

Data transmitted by the server to the client and status responses that do not indicate command
completion are prefixed with the token "*", and are called untagged responses.

Server data be sent as a result of a client command, or be sent unilaterally by the
server. There is no syntactic difference between server data that resulted from a specific
command and server data that were sent unilaterally.

The server completion result response indicates the success or failure of the operation. It is
tagged with the same tag as the client command which began the operation. Thus, if more than
one command is in progress, the tag in a server completion response identifies the command to
which the response applies. There are three possible server completion responses: OK (indicating
success), NO (indicating failure), or BAD (indicating a protocol error such as unrecognized
command or command syntax error).

SHOULD
MUST

MUST

MUST

MAY MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 9

Servers enforce the syntax outlined in this specification strictly. Any client command
with a protocol syntax error, including (but not limited to) missing or extraneous spaces or
arguments, be rejected, and the client given a BAD server completion response.

The protocol receiver of an IMAP4rev2 client reads a response line from the server. It then takes
action on the response based upon the first token of the response, which can be a tag, a "*", or a
"+".

A client be prepared to accept any server response at all times. This includes server data
that was not requested. Server data be remembered (cached), so that the client can
reference its remembered copy rather than sending a command to the server to request the data.
In the case of certain server data, the data be remembered, as specified elsewhere in this
document.

This topic is discussed in greater detail in the Server Responses section.

2.3. Message Attributes
In addition to message text, each message has several attributes associated with it. These
attributes can be retrieved individually or in conjunction with other attributes or message texts.

2.3.1. Message Numbers

Messages in IMAP4rev2 are accessed by one of two numbers; the unique identifier (UID) or the
message sequence number.

SHOULD

SHOULD

MUST
SHOULD

MUST

2.3.1.1. Unique Identifier (UID) Message Attribute
A UID is an unsigned non-zero 32-bit value assigned to each message, which when used with the
unique identifier validity value (see below) forms a 64-bit value that refer to any other
message in the mailbox or any subsequent mailbox with the same name forever. Unique
identifiers are assigned in a strictly ascending fashion in the mailbox; as each message is added
to the mailbox it is assigned a higher UID than the message(s) which were added previously.
Unlike message sequence numbers, unique identifiers are not necessarily contiguous.

The unique identifier of a message change during the session, and
change between sessions. Any change of unique identifiers between sessions be detectable
using the UIDVALIDITY mechanism discussed below. Persistent unique identifiers are required
for a client to resynchronize its state from a previous session with the server (e.g., disconnected
or offline access clients); this is discussed further in .

Associated with every mailbox are two 32-bit unsigned non-zero values which aid in unique
identifier handling: the next unique identifier value (UIDNEXT) and the unique identifier validity
value (UIDVALIDITY).

The next unique identifier value is the predicted value that will be assigned to a new message in
the mailbox. Unless the unique identifier validity also changes (see below), the next unique
identifier value have the following two characteristics. First, the next unique identifier

MUST NOT

MUST NOT SHOULD NOT
MUST

[IMAP-MODEL] [IMAP-DISC]

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 10

2.3.1.2. Message Sequence Number Message Attribute

value change unless new messages are added to the mailbox; and second, the next
unique identifier value change whenever new messages are added to the mailbox, even if
those new messages are subsequently expunged.

Note: The next unique identifier value is intended to provide a means for a client to
determine whether any messages have been delivered to the mailbox since the previous
time it checked this value. It is not intended to provide any guarantee that any message will
have this unique identifier. A client can only assume, at the time that it obtains the next
unique identifier value, that messages arriving after that time will have a UID greater than
or equal to that value.

The unique identifier validity value is sent in a UIDVALIDITY response code in an OK untagged
response at mailbox selection time. If unique identifiers from an earlier session fail to persist in
this session, the unique identifier validity value be greater than the one used in the earlier
session. A good UIDVALIDITY value to use is a 32-bit representation of the current date/time
when the value is assigned: this ensures that the value is unique and always increases. Another
possible alternative is a global counter that gets incremented every time a mailbox is created.

Note: Ideally, unique identifiers persist at all times. Although this specification
recognizes that failure to persist can be unavoidable in certain server environments, it
strongly encourages message store implementation techniques that avoid this problem. For
example:

Unique identifiers be strictly ascending in the mailbox at all times. If the physical
message store is re-ordered by a non-IMAP agent, this requires that the unique identifiers
in the mailbox be regenerated, since the former unique identifiers are no longer strictly
ascending as a result of the re-ordering.

If the message store has no mechanism to store unique identifiers, it must regenerate
unique identifiers at each session, and each session must have a unique UIDVALIDITY
value.

If the mailbox is deleted/renamed and a new mailbox with the same name is created at a
later date, the server must either keep track of unique identifiers from the previous
instance of the mailbox, or it must assign a new UIDVALIDITY value to the new instance of
the mailbox.

The combination of mailbox name, UIDVALIDITY, and UID must refer to a single
immutable (or expunged) message on that server forever. In particular, the internal date,

 size, envelope, body structure, and message texts (all BODY[...] fetch data items)
 never change. This does not include message numbers, nor does it include attributes

that can be set by a STORE command (e.g., FLAGS). When a message is expunged, its UID
 be reused under the same UIDVALIDITY value.

MUST NOT
MUST

MUST

SHOULD

1. MUST

2.

3.

4.

[RFC-5322]
MUST

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 11

\Seen

\Answered

\Flagged

\Deleted

\Draft

\Recent

A Message Sequence Number is a relative position from 1 to the number of messages in the
mailbox. This position be ordered by ascending unique identifier. As each new message is
added, it is assigned a message sequence number that is 1 higher than the number of messages in
the mailbox before that new message was added.

Message sequence numbers can be reassigned during the session. For example, when a message
is permanently removed (expunged) from the mailbox, the message sequence number for all
subsequent messages is decremented. The number of messages in the mailbox is also
decremented. Similarly, a new message can be assigned a message sequence number that was
once held by some other message prior to an expunge.

In addition to accessing messages by relative position in the mailbox, message sequence
numbers can be used in mathematical calculations. For example, if an untagged "11 EXISTS" is
received, and previously an untagged "8 EXISTS" was received, three new messages have arrived
with message sequence numbers of 9, 10, and 11. Another example, if message 287 in a 523
message mailbox has UID 12345, there are exactly 286 messages which have lesser UIDs and 236
messages which have greater UIDs.

2.3.2. Flags Message Attribute

A message has associated with it a list of zero or more named tokens, known as "flags". A flag is
set by its addition to this list, and is cleared by its removal. There are two types of flags in
IMAP4rev2: system flags, and keywords. A flag of either type can also be permanent or session-
only.

A system flag is a flag name that is pre-defined in this specification and begins with "\". Certain
system flags (\Deleted and \Seen) have special semantics described elsewhere in this document.
The currently-defined system flags are:

Message has been read

Message has been answered

Message is "flagged" for urgent/special attention

Message is "deleted" for removal by later EXPUNGE

Message has not completed composition (marked as a draft).

This flag was in use in IMAP4rev1 and is now deprecated.

A keyword is defined by the server implementation. Keywords do not begin with "\". Servers
permit the client to define new keywords in the mailbox (see the description of the
PERMANENTFLAGS response code for more information). Some keywords that start with "$" are
also defined in this specification.

MUST

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 12

$Forwarded:

$MDNSent

$Junk

$NotJunk

$Phishing

This document defines several keywords that were not originally defined in RFC 3501, but which
were found to be useful by client implementations. These keywords be supported (i.e.
allowed in SEARCH, allowed and preserved in APPEND, COPY, MOVE commands) by server
implementations:

Message has been forwarded to another email address, embedded within or
attached to a new message. An email client sets this keyword when it successfully forwards
the message to another email address. Typical usage of this keyword is to show a different (or
additional) icon for a message that has been forwarded. Once set, the flag be
cleared.

Message Disposition Notification was generated and sent for this
message. See for more details on how this keyword is used and for requirements
on clients and servers.

The user (or a delivery agent on behalf of the user) may choose to mark a message as
definitely containing junk ($Junk; see also the related keyword $NotJunk). The $Junk keyword
can be used to mark (and potentially move/delete messages later), group or hide undesirable
messages. See for more information.

The user (or a delivery agent on behalf of the user) may choose to mark a message as
definitely not containing junk ($NotJunk; see also the related keyword $Junk). The $NotJunk
keyword can be used to mark, group or show messages that the user wants to see. See

 for more information.

 The $Phishing keyword can be used by a delivery agent to mark a message as highly
likely to be a phishing email. An email that's determined to be a phishing email by the
delivery agent should also be considered a junk email and have the appropriate junk filtering
applied, including setting the $Junk flag and placing in the \Junk special-use mailbox (see
Section 7.3.1) if available.

If both the $Phishing flag and the $Junk flag are set, the user agent should display an
additional warning message to the user. Additionally the user agent may display a warning
when clicking on any hyperlinks within the message.

The requirement for both $Phishing and $Junk to be set before a user agent displays a
warning is for better backwards compatibility with existing clients that understand the $Junk
flag but not the $Phishing flag. This is so that when an unextended client removes the $Junk
flag, an extended client will also show the correct state. See for more
information.

$Junk and $NotJunk are mutually exclusive. If more than one of them is set for a message, the
client treat this as if none of them is set and unset both of them on the IMAP
server.

Other registered keywords can be found in the "IMAP and JMAP Keywords" registry
. New keywords be registered in this registry using the procedure

specified in .

SHOULD

SHOULD NOT

[RFC8098]
[RFC3503]

[IMAP-KEYWORDS-REG]

[IMAP-
KEYWORDS-REG]

[IMAP-KEYWORDS-REG]

MUST SHOULD

[IMAP-
KEYWORDS-REG] SHOULD

[RFC5788]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 13

A flag can be permanent or session-only on a per-flag basis. Permanent flags are those which the
client can add or remove from the message flags permanently; that is, concurrent and
subsequent sessions will see any change in permanent flags. Changes to session flags are valid
only in that session.

2.3.3. Internal Date Message Attribute

An Internal Date message attribute is the internal date and time of the message on the server.
This is not the date and time in the header, but rather a date and time which reflects
when the message was received. In the case of messages delivered via , this is the date
and time of final delivery of the message as defined by . In the case of messages delivered
by the IMAP4rev2 COPY or MOVE command, this be the internal date and time of the
source message. In the case of messages delivered by the IMAP4rev2 APPEND command, this

 be the date and time as specified in the APPEND command description. All other cases
are implementation defined.

2.3.4. [RFC-5322] Size Message Attribute

An RFC 5322 size is the number of octets in the message, as expressed in format.

2.3.5. Envelope Structure Message Attribute

An Envelope Structure is a parsed representation of the header of the message. Note
that the IMAP Envelope structure is not the same as an envelope.

2.3.6. Body Structure Message Attribute

A Body Structure is a parsed representation of the body structure information of the
message.

2.4. Message Texts
In addition to being able to fetch the full text of a message, IMAP4rev2 permits the
fetching of portions of the full message text. Specifically, it is possible to fetch the
message header, message body, a body part, or a header.

3. State and Flow Diagram
Once the connection between client and server is established, an IMAP4rev2 connection is in one
of four states. The initial state is identified in the server greeting. Most commands are only valid
in certain states. It is a protocol error for the client to attempt a command while the connection is
in an inappropriate state, and the server will respond with a BAD or NO (depending upon server
implementation) command completion result.

3.1. Not Authenticated State
In the not authenticated state, the client supply authentication credentials before most
commands will be permitted. This state is entered when a connection starts unless the
connection has been pre-authenticated.

[RFC-5322]
[SMTP]

[SMTP]
SHOULD

SHOULD

[RFC-5322]

[RFC-5322]
[SMTP]

[MIME-IMB]

[RFC-5322]
[RFC-5322]

[RFC-5322] [MIME-IMB] [MIME-IMB]

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 14

3.2. Authenticated State
In the authenticated state, the client is authenticated and select a mailbox to access before
commands that affect messages will be permitted. This state is entered when a pre-authenticated
connection starts, when acceptable authentication credentials have been provided, after an error
in selecting a mailbox, or after a successful CLOSE or UNSELECT command.

3.3. Selected State
In a selected state, a mailbox has been selected to access. This state is entered when a mailbox
has been successfully selected.

3.4. Logout State
In the logout state, the connection is being terminated. This state can be entered as a result of a
client request (via the LOGOUT command) or by unilateral action on the part of either the client
or server.

If the client requests the logout state, the server send an untagged BYE response and a
tagged OK response to the LOGOUT command before the server closes the connection; and the
client read the tagged OK response to the LOGOUT command before the client closes the
connection.

MUST

MUST

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 15

A server unilaterally close the connection without sending an untagged BYE
response that contains the reason for having done so. A client unilaterally close the
connection, and instead issue a LOGOUT command. If the server detects that the client
has unilaterally closed the connection, the server omit the untagged BYE response and
simply close its connection.

Legend for the above diagram:

connection without pre-authentication (OK greeting)
pre-authenticated connection (PREAUTH greeting)
rejected connection (BYE greeting)
successful LOGIN or AUTHENTICATE command
successful SELECT or EXAMINE command
CLOSE or UNSELECT command, unsolicited CLOSED response code or failed SELECT or
EXAMINE command
LOGOUT command, server shutdown, or connection closed

SHOULD NOT
SHOULD NOT

SHOULD
MAY

 +----------------------+
 |connection established|
 +----------------------+
 ||
 \/
 +--------------------------------------+
 | server greeting |
 +--------------------------------------+
 || (1) || (2) || (3)
 \/ || ||
 +-----------------+ || ||
 |Not Authenticated| || ||
 +-----------------+ || ||
 || (7) || (4) || || | |
 || \/ \/ ||
 || +----------------+ ||
 || | Authenticated |<=++ ||
 || +----------------+ || ||
 || || (7) || (5) || (6) ||
 || || \/ || ||
 || || +--------+ || ||
 || || |Selected|==++ ||
 || || +--------+ ||
 || || || (7) ||
 \/ \/ \/ \/
 +--------------------------------------+
 | Logout |
 +--------------------------------------+
 ||
 \/
 +-------------------------------+
 |both sides close the connection|
 +-------------------------------+

1.
2.
3.
4.
5.
6.

7.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 16

4. Data Formats
IMAP4rev2 uses textual commands and responses. Data in IMAP4rev2 can be in one of several
forms: atom, number, string, parenthesized list, or NIL. Note that a particular data item may take
more than one form; for example, a data item defined as using "astring" syntax may be either an
atom or a string.

4.1. Atom
An atom consists of one or more non-special characters.

4.1.1. Sequence set and UID set

A set of messages can be referenced by a sequence set containing either message sequence
numbers or unique identifiers. See Section 9 for details. Sequence sets can contain ranges (e.g.
"5:50"), an enumeration of specific message sequence numbers/unique identifiers, a special
symbol "*", or a combination of the above. Note that a sequence set never mixes message
sequence numbers and unique identifiers in the same representation.

A "UID set" is similar to the sequence set of unique identifiers; however, the "*" value for a
sequence number is not permitted.

4.2. Number
A number consists of one or more digit characters, and represents a numeric value.

4.3. String
A string is in one of three forms: synchronizing literal, non-synchronizing literal or quoted string.
The synchronizing literal form is the general form of string. The non-synchronizing literal form
is also the general form, but has length limitation. The quoted string form is an alternative that
avoids the overhead of processing a literal at the cost of limitations of characters which may be
used.

When the distinction between synchronizing and non-synchronizing literals is not important,
this document only uses the term "literal".

A synchronizing literal is a sequence of zero or more octets (including CR and LF), prefix-quoted
with an octet count in the form of an open brace ("{"), the number of octets, close brace ("}"), and
CRLF. In the case of synchronizing literals transmitted from server to client, the CRLF is
immediately followed by the octet data. In the case of synchronizing literals transmitted from
client to server, the client wait to receive a command continuation request (described later
in this document) before sending the octet data (and the remainder of the command).

The non-synchronizing literal is an alternative form of synchronizing literal, and it may appear
in communication from client to server instead of the synchonizing form of literal. The non-
synchronizing literal form be sent from server to client. The non-synchronizing literal

MUST

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 17

4.4. Parenthesized List
Data structures are represented as a "parenthesized list"; a sequence of data items, delimited by
space, and bounded at each end by parentheses. A parenthesized list can contain other
parenthesized lists, using multiple levels of parentheses to indicate nesting.

The empty list is represented as () -- a parenthesized list with no members.

is distinguished from the synchronizing literal by having a plus ("+") between the octet count and
the closing brace ("}"). The server does not generate a command continuation request in
response to a non-synchronizing literal, and clients are not required to wait before sending the
octets of a non- synchronizing literal. Unless specified otherwise in an IMAP extension, non-
synchronizing literals be larger than 4096 octets. Any literal larger than 4096 bytes

 be sent as a synchronizing literal. (Non-synchronizing literals defined in this document are
the same as non-synchronizing literals defined by the LITERAL- extension from . See
that document for details on how to handle invalid non-synchronizing literals longer than 4096
octets and for interaction with other IMAP extensions.)

A quoted string is a sequence of zero or more Unicode characters, excluding CR and LF, encoded
in UTF-8, with double quote (<">) characters at each end.

The empty string is represented as "" (a quoted string with zero characters between double
quotes), as {0} followed by CRLF (a synchronizing literal with an octet count of 0) or as {0+}
followed by CRLF (a non-synchronizing literal with an octet count of 0).

Note: Even if the octet count is 0, a client transmitting a synchronizing literal wait to
receive a command continuation request.

4.3.1. 8-bit and Binary Strings

8-bit textual and binary mail is supported through the use of a content transfer
encoding. IMAP4rev2 implementations transmit 8-bit or multi-octet characters in literals,
but do so only when the is identified.

IMAP4rev2 is compatible with . As a result, the identified charset for header-field
values with 8-bit content is UTF-8 . IMAP4rev2 implementations accept and
transmit text in quoted-strings as long as the string does not contain NUL, CR, or LF. This
differs from IMAP4rev1 implementations.

Although a BINARY content transfer encoding is defined, unencoded binary strings are not
permitted, unless returned in a <literal8> in response to BINARY.PEEK[<section-
binary>]<<partial>> or BINARY[<section-binary>]<<partial>> FETCH data item. A "binary string"
is any string with NUL characters. A string with an excessive amount of CTL characters also
be considered to be binary. Unless returned in response to BINARY.PEEK[...]/BINARY[...] FETCH,
client and server implementations encode binary data into a textual form, such as BASE64,
before transmitting the data.

MUST NOT
MUST

[RFC7888]

MUST

[MIME-IMB]
MAY

SHOULD [CHARSET]

[I18N-HDRS]
[UTF-8] MUST MAY

[UTF-8]

MAY

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 18

4.5. NIL
The special form "NIL" represents the non-existence of a particular data item that is represented
as a string or parenthesized list, as distinct from the empty string "" or the empty parenthesized
list ().

Note: NIL is never used for any data item which takes the form of an atom. For example, a
mailbox name of "NIL" is a mailbox named NIL as opposed to a non-existent mailbox name.
This is because mailbox uses "astring" syntax which is an atom or a string. Conversely, an
addr-name of NIL is a non-existent personal name, because addr-name uses "nstring" syntax
which is NIL or a string, but never an atom.

Examples:

The following LIST response:

is equivalent to:

as LIST response ABNF is using "astring" for mailbox name.

However, the following response:

is not equivalent to:

The former means absence of the body part, while the latter means that it contains literal
sequence of characters "NIL".

5. Operational Considerations
The following rules are listed here to ensure that all IMAP4rev2 implementations interoperate
properly.

 * LIST () "/" NIL

 * LIST () "/" "NIL"

 * FETCH 1 (BODY[1] NIL)

 * FETCH 1 (BODY[1] "NIL")

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 19

5.1. Mailbox Naming
In IMAP4rev2, Mailbox names are encoded in Net-Unicode (this differs from
IMAP4rev1). Client implementations attempt to create Net-Unicode mailbox names, and

 interpret any 8-bit mailbox names returned by LIST as . Server
implementations prohibit the creation of 8-bit mailbox names that do not comply with Net-
Unicode. However, servers accept a de-normalized UTF-8 mailbox name and convert it to
Unicode normalization form "NFC" (as per Net-Unicode requirements) prior to mailbox creation.
Servers that choose to accept such de-normalized UTF-8 mailbox names accept them in all
IMAP commands that have a mailbox name parameter. In particular SELECT <name> must open
the same mailbox that was successfully created with CREATE <name>, even if <name> is a de-
normalized UTF-8 mailbox name.

The case-insensitive mailbox name INBOX is a special name reserved to mean "the primary
mailbox for this user on this server". (Note that this special name may not exist on some servers
for some users, for example if the user has no access to personal namespace.) The interpretation
of all other names is implementation-dependent.

In particular, this specification takes no position on case sensitivity in non-INBOX mailbox
names. Some server implementations are fully case-sensitive in ASCII range; others preserve
case of a newly-created name but otherwise are case-insensitive; and yet others coerce names to
a particular case. Client implementations must be able to interact with any of these.

There are certain client considerations when creating a new mailbox name:

Any character which is one of the atom-specials (see the Formal Syntax in Section 9) will
require that the mailbox name be represented as a quoted string or literal.
CTL and other non-graphic characters are difficult to represent in a user interface and are
best avoided. Servers refuse to create mailbox names containing Unicode CTL
characters.
Although the list-wildcard characters ("%" and "*") are valid in a mailbox name, it is difficult
to use such mailbox names with the LIST command due to the conflict with wildcard
interpretation.
Usually, a character (determined by the server implementation) is reserved to delimit levels
of hierarchy.
Two characters, "#" and "&", have meanings by convention, and should be avoided except
when used in that convention. See Section 5.1.2.1 and Appendix A.1 respectively.

5.1.1. Mailbox Hierarchy Naming

If it is desired to export hierarchical mailbox names, mailbox names be left-to-right
hierarchical using a single character to separate levels of hierarchy. The same hierarchy
separator character is used for all levels of hierarchy within a single name.

[NET-UNICODE]
MAY

MUST [NET-UNICODE]
MUST

MAY

MUST

1.

2.
MAY

3.

4.

5.

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 20

5.1.2. Namespaces

Personal Namespace: A namespace that the server considers within the personal scope of the
authenticated user on a particular connection. Typically, only the authenticated user has access
to mailboxes in their Personal Namespace. It is the part of the namespace that belongs to the user
that is allocated for mailboxes. If an INBOX exists for a user, it appear within the user's
personal namespace. In the typical case, there be only one Personal Namespace per user
on a server.

Other Users' Namespace: A namespace that consists of mailboxes from the Personal Namespaces
of other users. To access mailboxes in the Other Users' Namespace, the currently authenticated
user be explicitly granted access rights. For example, it is common for a manager to grant
to their administrative support staff access rights to their mailbox. In the typical case, there

 be only one Other Users' Namespace per user on a server.

Shared Namespace: A namespace that consists of mailboxes that are intended to be shared
amongst users and do not exist within a user's Personal Namespace.

The namespaces a server uses differ on a per-user basis.

5.1.2.2. Common namespace models
The previous version of this protocol did not define a default server namespace. Two common
namespace models have evolved:

The "Personal Mailbox" model, in which the default namespace that is presented consists of only
the user's personal mailboxes. To access shared mailboxes, the user must use an escape
mechanism to reach another namespace.

The "Complete Hierarchy" model, in which the default namespace that is presented includes the
user's personal mailboxes along with any other mailboxes they have access to.

MUST
SHOULD

MUST

SHOULD

MAY

5.1.2.1. Historic Mailbox Namespace Naming Convention
By convention, the first hierarchical element of any mailbox name which begins with "#"
identifies the "namespace" of the remainder of the name. This makes it possible to disambiguate
between different types of mailbox stores, each of which have their own namespaces.

For example, implementations which offer access to USENET newsgroups use the
"#news" namespace to partition the USENET newsgroup namespace from that of other
mailboxes. Thus, the comp.mail.misc newsgroup would have a mailbox name of
"#news.comp.mail.misc", and the name "comp.mail.misc" can refer to a different object (e.g.,
a user's private mailbox).

Namespaces that include the "#" character are not IMAP URL friendly requiring the
"#" character to be represented as %23 when within URLs. As such, server implementors
instead consider using namespace prefixes that do not contain the "#" character.

MAY

[IMAP-URL]
MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 21

5.2. Mailbox Size and Message Status Updates
At any time, a server can send data that the client did not request. Sometimes, such behavior is
required by this specification and/or extensions. For example, agents other than the server
add messages to the mailbox (e.g., new message delivery), change the flags of the messages in the
mailbox (e.g., simultaneous access to the same mailbox by multiple agents), or even remove
messages from the mailbox. A server send mailbox size updates automatically if a mailbox
size change is observed during the processing of a command. A server send message
flag updates automatically, without requiring the client to request such updates explicitly.

Special rules exist for server notification of a client about the removal of messages to prevent
synchronization errors; see the description of the EXPUNGE response (Section 7.5.1) for more
detail. In particular, it is NOT permitted to send an EXISTS response that would reduce the
number of messages in the mailbox; only the EXPUNGE response can do this.

Regardless of what implementation decisions a client makes on remembering data from the
server, a client implementation remember mailbox size updates. It assume that
any command after the initial mailbox selection will return the size of the mailbox.

5.3. Response when no Command in Progress
Server implementations are permitted to send an untagged response (except for EXPUNGE) while
there is no command in progress. Server implementations that send such responses deal
with flow control considerations. Specifically, they either (1) verify that the size of the data
does not exceed the underlying transport's available window size, or (2) use non-blocking writes.

5.4. Autologout Timer
If a server has an inactivity autologout timer that applies to sessions after authentication, the
duration of that timer be at least 30 minutes. The receipt of any command from the client
during that interval resets the autologout timer.

Note that this specification doesn't have any restrictions on autologout timer used before
successful client authentication. In particular, servers are allowed to use shortened pre-
authentication timer to protect themselves from Denial of Service attacks.

MAY

MUST
SHOULD

MUST MUST NOT

MUST
MUST

MUST

5.5. Multiple Commands in Progress (Command Pipelining)
The client send another command without waiting for the completion result response of a
command, subject to ambiguity rules (see below) and flow control constraints on the underlying
data stream. Similarly, a server begin processing another command before processing the
current command to completion, subject to ambiguity rules. However, any command
continuation request responses and command continuations be negotiated before any
subsequent command is initiated.

MAY

MAY

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 22

6. Client Commands
IMAP4rev2 commands are described in this section. Commands are organized by the state in
which the command is permitted. Commands which are permitted in multiple states are listed in
the minimum permitted state (for example, commands valid in authenticated and selected state
are listed in the authenticated state commands).

The exception is if an ambiguity would result because of a command that would affect the results
of other commands. If the server detects a possible ambiguity, it execute commands to
completion in the order given by the client.

The most obvious example of ambiguity is when a command would affect the results of another
command, e.g., a FETCH of a message's flags and a STORE of that same message's flags.

A non-obvious ambiguity occurs with commands that permit an untagged EXPUNGE response
(commands other than FETCH, STORE, and SEARCH), since an untagged EXPUNGE response can
invalidate sequence numbers in a subsequent command. This is not a problem for FETCH,
STORE, or SEARCH commands because servers are prohibited from sending EXPUNGE responses
while any of those commands are in progress. Therefore, if the client sends any command other
than FETCH, STORE, or SEARCH, it wait for the completion result response before sending a
command with message sequence numbers.

Note: EXPUNGE responses are permitted while UID FETCH, UID STORE, and UID SEARCH are
in progress. If the client sends a UID command, it wait for a completion result response
before sending a command which uses message sequence numbers (this may include UID
SEARCH). Any message sequence numbers in an argument to UID SEARCH are associated
with messages prior to the effect of any untagged EXPUNGE returned by the UID SEARCH.

For example, the following non-waiting command sequences are invalid:

FETCH + NOOP + STORE

STORE + COPY + FETCH

COPY + COPY

The following are examples of valid non-waiting command sequences:

FETCH + STORE + SEARCH + NOOP

STORE + COPY + EXPUNGE

UID SEARCH + UID SEARCH may be valid or invalid as a non-waiting command sequence,
depending upon whether or not the second UID SEARCH contains message sequence
numbers.

Use of SEARCH result variable (see Section 6.4.4.1) creates direct dependency between two
commands. See Section 6.4.4.2 for more considerations about pipelining such dependent
commands.

MUST

MUST

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 23

Command arguments, identified by "Arguments:" in the command descriptions below, are
described by function, not by syntax. The precise syntax of command arguments is described in
the Formal Syntax (Section 9).

Some commands cause specific server responses to be returned; these are identified by
"Responses:" in the command descriptions below. See the response descriptions in the Responses
section (Section 7) for information on these responses, and the Formal Syntax (Section 9) for the
precise syntax of these responses. It is possible for server data to be transmitted as a result of any
command. Thus, commands that do not specifically require server data specify "no specific
responses for this command" instead of "none".

The "Result:" in the command description refers to the possible tagged status responses to a
command, and any special interpretation of these status responses.

The state of a connection is only changed by successful commands which are documented as
changing state. A rejected command (BAD response) never changes the state of the connection or
of the selected mailbox. A failed command (NO response) generally does not change the state of
the connection or of the selected mailbox; the exception being the SELECT and EXAMINE
commands.

6.1. Client Commands - Any State
The following commands are valid in any state: CAPABILITY, NOOP, and LOGOUT.

Arguments:

Responses:

Result:

6.1.1. CAPABILITY Command

none

 untagged response: CAPABILITY

OK - capability completed

BAD - arguments invalid

The CAPABILITY command requests a listing of capabilities (e.g. extensions and/or modifications
of server behaviour) that the server supports. The server send a single untagged
CAPABILITY response with "IMAP4rev2" as one of the listed capabilities before the (tagged) OK
response.

A capability name which begins with "AUTH=" indicates that the server supports that particular
authentication mechanism as defined in . All such names are, by definition, part of this
specification.

Other capability names refer to extensions, revisions, or amendments to this specification. See
the documentation of the CAPABILITY response in Section 7.2.2 for additional information. If
IMAP4rev1 capability is not advertised, no capabilities, beyond the base IMAP4rev2 set defined
in this specification, are enabled without explicit client action to invoke the capability. If both

REQUIRED

MUST

[SASL]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 24

Arguments:

Responses:

Result:

6.1.2. NOOP Command

none

no specific responses for this command (but see below)

OK - noop completed

BAD - command unknown or arguments invalid

The NOOP command always succeeds. It does nothing.

Since any command can return a status update as untagged data, the NOOP command can be
used as a periodic poll for new messages or message status updates during a period of inactivity
(the IDLE command Section 6.3.13 should be used instead of NOOP if real-time updates to
mailbox state are desirable). The NOOP command can also be used to reset any inactivity
autologout timer on the server.

IMAP4rev1 and IMAP4rev2 capabilities are advertised, no capabilities, beyond the base
IMAP4rev1 set specified in RFC 3501, are enabled without explicit client action to invoke the
capability.

Client and server implementations implement the STARTTLS Section 6.2.1 and
LOGINDISABLED capabilities on cleartext ports. Client and server implementations also
implement AUTH=PLAIN (described in) capability on both cleartext and Implicit TLS
ports. See the Security Considerations (Section 11) for important information.

Unless specified otherwise, all registered extensions to IMAP4rev1 are also valid extensions to
IMAP4rev2.

Example:

MUST
MUST

[PLAIN]

 C: abcd CAPABILITY
 S: * CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI
 LOGINDISABLED
 S: abcd OK CAPABILITY completed
 C: efgh STARTTLS
 S: efgh OK STARTLS completed
 <TLS negotiation, further commands are under [TLS] layer>
 C: ijkl CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=GSSAPI AUTH=PLAIN
 S: ijkl OK CAPABILITY completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 25

Arguments:

Responses:

Result:

Example:

6.1.3. LOGOUT Command

none

 untagged response: BYE

OK - logout completed

BAD - command unknown or arguments invalid

The LOGOUT command informs the server that the client is done with the connection. The server
 send a BYE untagged response before the (tagged) OK response, and then close the network

connection.

Example:

6.2. Client Commands - Not Authenticated State
In the not authenticated state, the AUTHENTICATE or LOGIN command establishes
authentication and enters the authenticated state. The AUTHENTICATE command provides a
general mechanism for a variety of authentication techniques, privacy protection, and integrity
checking; whereas the LOGIN command uses a traditional user name and plaintext password
pair and has no means of establishing privacy protection or integrity checking.

The STARTTLS command is an alternative form of establishing session privacy protection and
integrity checking, but does not by itself establish authentication or enter the authenticated state.

Server implementations allow access to certain mailboxes without establishing
authentication. This can be done by means of the ANONYMOUS authenticator described
in . An older convention is a LOGIN command using the userid "anonymous"; in
this case, a password is required although the server may choose to accept any password. The
restrictions placed on anonymous users are implementation-dependent.

 C: a002 NOOP
 S: a002 OK NOOP completed
 . . .
 C: a047 NOOP
 S: * 22 EXPUNGE
 S: * 23 EXISTS
 S: * 14 FETCH (UID 1305 FLAGS (\Seen \Deleted))
 S: a047 OK NOOP completed

REQUIRED

MUST

 C: A023 LOGOUT
 S: * BYE IMAP4rev2 Server logging out
 S: A023 OK LOGOUT completed
 (Server and client then close the connection)

MAY
[SASL]

[ANONYMOUS]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 26

Once authenticated (including as anonymous), it is not possible to re-enter not authenticated
state.

In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT), the following
commands are valid in the not authenticated state: STARTTLS, AUTHENTICATE and LOGIN. See
the Security Considerations (Section 11) for important information about these commands.

Arguments:

Responses:

Result:

6.2.1. STARTTLS Command

none

no specific response for this command

OK - starttls completed, begin TLS negotiation

NO - TLS negotiation can't be initiated, due to server configuration error

BAD - STARTTLS received after a successful TLS negotiation or arguments invalid

Note that STARTTLS command is available only on cleartext ports. The server always
respond with tagged BAD response when STARTTLS command is received on Implicit TLS port.

A negotiation begins immediately after the CRLF at the end of the tagged OK
response from the server. Once a client issues a STARTTLS command, it issue further
commands until a server response is seen and the TLS negotiation is complete. Some past server
implementation incorrectly implemented STARTTLS processing and are known to contain
STARTTLS plaintext command injection vulnerability . In order to avoid this
vulnerability, server implementations do one of the following If any data is received in the
same TCP buffer after the CRLF that starts the STARTTLS command:

Extra data from the TCP buffer is interpreted as beginning of the TLS handshake. (If the data
is in cleartext, this will result in the TLS handshake failing.)
Extra data from the TCP buffer is thrown away.

Note that the first option is friendlier to clients that pipeline beginning of STARTTLS command
with TLS handshake data.

After successful TLS negotiation the server remains in the non-authenticated state, even if client
credentials are supplied during the TLS negotiation. This does not preclude an authentication
mechanism such as EXTERNAL (defined in) from using client identity determined by the
TLS negotiation.

Once TLS has been started, the client discard cached information about server capabilities
and re-issue the CAPABILITY command. This is necessary to protect against man-in- the-
middle attacks which alter the capabilities list prior to STARTTLS. The server advertise
different capabilities, and in particular advertise the STARTTLS capability, after a
successful STARTTLS command.

MUST

TLS [TLS-1.3]
MUST NOT

[CERT-555316]
MUST

1.

2.

[SASL]

MUST
SHOULD

MAY
SHOULD NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 27

Example:

 C: a001 CAPABILITY
 S: * CAPABILITY IMAP4rev2 STARTTLS LOGINDISABLED
 S: a001 OK CAPABILITY completed
 C: a002 STARTTLS
 S: a002 OK Begin TLS negotiation now
 <TLS negotiation, further commands are under TLS layer>
 C: a003 CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=PLAIN
 S: a003 OK CAPABILITY completed
 C: a004 AUTHENTICATE PLAIN dGVzdAB0ZXN0AHRlc3Q=
 S: a004 OK Success (tls protection)

Arguments:

Responses:

Result:

6.2.2. AUTHENTICATE Command

SASL authentication mechanism name

 initial response

continuation data can be requested

OK - authenticate completed, now in authenticated state

NO - authenticate failure: unsupported authentication

mechanism, credentials rejected

BAD - command unknown or arguments invalid,

authentication exchange cancelled

The AUTHENTICATE command indicates a authentication mechanism to the server. If the
server supports the requested authentication mechanism, it performs an authentication protocol
exchange to authenticate and identify the client. It also negotiate an security
layer for subsequent protocol interactions. If the requested authentication mechanism is not
supported, the server reject the AUTHENTICATE command by sending a tagged NO
response.

The AUTHENTICATE command supports the optional "initial response" feature defined in Section
5.1 of . The client doesn't need to use it. If a SASL mechanism supports "initial response",
but it is not specified by the client, the server handles this as specified in Section 3 of .

The service name specified by this protocol's profile of is "imap".

The authentication protocol exchange consists of a series of server challenges and client
responses that are specific to the authentication mechanism. A server challenge consists of a
command continuation request response with the "+" token followed by a BASE64 encoded (see
Section 4 of) string. The client response consists of a single line consisting of a BASE64
encoded string. If the client wishes to cancel an authentication exchange, it issues a line

OPTIONAL

[SASL]

MAY OPTIONAL

SHOULD

[SASL]
[SASL]

[SASL]

[RFC4648]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 28

consisting of a single "*". If the server receives such a response, or if it receives an invalid
BASE64 string (e.g. characters outside the BASE64 alphabet, or non-terminal "="), it reject
the AUTHENTICATE command by sending a tagged BAD response.

As with any other client response, the initial response be encoded as BASE64. It also
be transmitted outside of a quoted string or literal. To send a zero-length initial response, the
client send a single pad character ("="). This indicates that the response is present, but is a
zero-length string.

When decoding the BASE64 data in the initial response, decoding errors be treated as in
any normal SASL client response, i.e. with a tagged BAD response. In particular, the server
should check for any characters not explicitly allowed by the BASE64 alphabet, as well as any
sequence of BASE64 characters that contains the pad character ('=') anywhere other than the end
of the string (e.g., "=AAA" and "AAA=BBB" are not allowed).

If the client uses an initial response with a SASL mechanism that does not support an initial
response, the server reject the command with a tagged BAD response.

If a security layer is negotiated through the authentication exchange, it takes effect
immediately following the CRLF that concludes the authentication exchange for the client, and
the CRLF of the tagged OK response for the server.

While client and server implementations implement the AUTHENTICATE command itself,
it is not required to implement any authentication mechanisms other than the PLAIN mechanism
described in . Also, an authentication mechanism is not required to support any security
layers.

Note: a server implementation implement a configuration in which it does NOT permit
any plaintext password mechanisms, unless either the STARTTLS command has been
negotiated, TLS has been negotiated on an Implicit TLS port, or some other mechanism that
protects the session from password snooping has been provided. Server sites
use any configuration which permits a plaintext password mechanism without such a
protection mechanism against password snooping. Client and server implementations

 implement additional mechanisms that do not use plaintext passwords, such
the GSSAPI mechanism described in , the SCRAM-SHA-256/SCRAM-SHA-256-PLUS

 mechanisms and/or EXTERNAL mechanism for mutual TLS
authentication. (Note that SASL framework allows creation of SASL mechanisms that support
2FA (2-factor authentication), however none are fully ready to be recommended by this
document.)

Servers and clients can support multiple authentication mechanisms. The server list its
supported authentication mechanisms in the response to the CAPABILITY command so that the
client knows which authentication mechanisms to use.

A server include a CAPABILITY response code in the tagged OK response of a successful
AUTHENTICATE command in order to send capabilities automatically. It is unnecessary for a
client to send a separate CAPABILITY command if it recognizes these automatic capabilities. This
should only be done if a security layer was not negotiated by the AUTHENTICATE command,

MUST

MUST MUST

MUST

MUST

MUST

[SASL]

MUST

[PLAIN]

MUST

SHOULD NOT

SHOULD [SASL]
[RFC4752]

[SCRAM-SHA-256] [SASL]

SHOULD

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 29

because the tagged OK response as part of an AUTHENTICATE command is not protected by
encryption/integrity checking. requires the client to re-issue a CAPABILITY command in
this case. The server advertise different capabilities after a successful AUTHENTICATE
command.

If an AUTHENTICATE command fails with a NO response, the client try another
authentication mechanism by issuing another AUTHENTICATE command. It also attempt to
authenticate by using the LOGIN command (see Section 6.2.3 for more detail). In other words, the
client request authentication types in decreasing order of preference, with the LOGIN
command as a last resort.

The authorization identity passed from the client to the server during the authentication
exchange is interpreted by the server as the user name whose privileges the client is requesting.

Example:

The following example demonstrates use of initial response.

[SASL]
MAY

MAY
MAY

MAY

 S: * OK [CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI]
 Capabilities
 C: A001 AUTHENTICATE GSSAPI
 S: +
 C: YIIB+wYJKoZIhvcSAQICAQBuggHqMIIB5qADAgEFoQMCAQ6iBw
 MFACAAAACjggEmYYIBIjCCAR6gAwIBBaESGxB1Lndhc2hpbmd0
 b24uZWR1oi0wK6ADAgEDoSQwIhsEaW1hcBsac2hpdmFtcy5jYW
 Mud2FzaGluZ3Rvbi5lZHWjgdMwgdCgAwIBAaEDAgEDooHDBIHA
 cS1GSa5b+fXnPZNmXB9SjL8Ollj2SKyb+3S0iXMljen/jNkpJX
 AleKTz6BQPzj8duz8EtoOuNfKgweViyn/9B9bccy1uuAE2HI0y
 C/PHXNNU9ZrBziJ8Lm0tTNc98kUpjXnHZhsMcz5Mx2GR6dGknb
 I0iaGcRerMUsWOuBmKKKRmVMMdR9T3EZdpqsBd7jZCNMWotjhi
 vd5zovQlFqQ2Wjc2+y46vKP/iXxWIuQJuDiisyXF0Y8+5GTpAL
 pHDc1/pIGmMIGjoAMCAQGigZsEgZg2on5mSuxoDHEA1w9bcW9n
 FdFxDKpdrQhVGVRDIzcCMCTzvUboqb5KjY1NJKJsfjRQiBYBdE
 NKfzK+g5DlV8nrw81uOcP8NOQCLR5XkoMHC0Dr/80ziQzbNqhx
 O6652Npft0LQwJvenwDI13YxpwOdMXzkWZN/XrEqOWp6GCgXTB
 vCyLWLlWnbaUkZdEYbKHBPjd8t/1x5Yg==
 S: + YGgGCSqGSIb3EgECAgIAb1kwV6ADAgEFoQMCAQ+iSzBJoAMC
 AQGiQgRAtHTEuOP2BXb9sBYFR4SJlDZxmg39IxmRBOhXRKdDA0
 uHTCOT9Bq3OsUTXUlk0CsFLoa8j+gvGDlgHuqzWHPSQg==
 C:
 S: + YDMGCSqGSIb3EgECAgIBAAD/////6jcyG4GE3KkTzBeBiVHe
 ceP2CWY0SR0fAQAgAAQEBAQ=
 C: YDMGCSqGSIb3EgECAgIBAAD/////3LQBHXTpFfZgrejpLlLImP
 wkhbfa2QteAQAgAG1yYwE=
 S: A001 OK GSSAPI authentication successful

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 30

Example:

Note: The line breaks within server challenges and client responses are for editorial clarity and
are not in real authenticators.

 S: * OK [CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI
 LOGINDISABLED] Server ready
 C: A01 STARTTLS
 S: A01 OK STARTLS completed
 <TLS negotiation, further commands are under [TLS] layer>
 C: A02 CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=GSSAPI AUTH=PLAIN
 S: A02 OK CAPABILITY completed
 C: A03 AUTHENTICATE PLAIN dGVzdAB0ZXN0AHRlc3Q=
 S: A03 OK Success (tls protection)

Arguments:

Responses:

Result:

6.2.3. LOGIN Command

user name

password

no specific responses for this command

OK - login completed, now in authenticated state

NO - login failure: user name or password rejected

BAD - command unknown or arguments invalid

The LOGIN command identifies the client to the server and carries the plaintext password
authenticating this user. The LOGIN command be used except as a last resort (after
attempting and failing to authenticate using the AUTHENTICATE command one or more times),
and it is recommended that client implementations have a means to disable any automatic use of
the LOGIN command.

A server include a CAPABILITY response code in the tagged OK response to a successful
LOGIN command in order to send capabilities automatically. It is unnecessary for a client to send
a separate CAPABILITY command if it recognizes these automatic capabilities.

Example:

Note: Use of the LOGIN command over an insecure network (such as the Internet) is a security
risk, because anyone monitoring network traffic can obtain plaintext passwords. For that reason
clients use LOGIN on unsecure networks.

SHOULD NOT

MAY

 C: a001 LOGIN SMITH SESAME
 S: a001 OK LOGIN completed

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 31

6.3. Client Commands - Authenticated State
In the authenticated state, commands that manipulate mailboxes as atomic entities are
permitted. Of these commands, the SELECT and EXAMINE commands will select a mailbox for
access and enter the selected state.

In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT), the following
commands are valid in the authenticated state: ENABLE, SELECT, EXAMINE, NAMESPACE,
CREATE, DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, STATUS, APPEND and IDLE.

Unless either the client is accessing IMAP service on Implicit TLS port , the STARTTLS
command has been negotiated or some other mechanism that protects the session from
password snooping has been provided, a server implementation implement a
configuration in which it advertises the LOGINDISABLED capability and does NOT permit the
LOGIN command. Server sites use any configuration which permits the LOGIN
command without such a protection mechanism against password snooping. A client
implementation send a LOGIN command if the LOGINDISABLED capability is
advertised.

[RFC8314]

MUST

SHOULD NOT

MUST NOT

Arguments:

Responses:

Result:

6.3.1. ENABLE Command

capability names

no specific responses for this command

OK - Relevant capabilities enabled

BAD - No arguments, or syntax error in an argument

Several IMAP extensions allow the server to return unsolicited responses specific to these
extensions in certain circumstances. However, servers cannot send those unsolicited responses
(with the exception of response codes (see Section 7.1) included in tagged or untagged OK/NO/
BAD responses, which can always be sent) until they know that the clients support such
extensions and thus won't choke on the extension response data.

The ENABLE command provides an explicit indication from the client that it supports particular
extensions. It is designed such that the client can send a simple constant string with the
extensions it supports, and the server will enable the shared subset that both support.

The ENABLE command takes a list of capability names, and requests the server to enable the
named extensions. Once enabled using ENABLE, each extension remains active until the IMAP
connection is closed. For each argument, the server does the following:

If the argument is not an extension known to the server, the server ignore the
argument.
If the argument is an extension known to the server, and it is not specifically permitted to be
enabled using ENABLE, the server ignore the argument. (Note that knowing about an
extension doesn't necessarily imply supporting that extension.)

• MUST

•
MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 32

If the argument is an extension that is supported by the server and that needs to be enabled,
the server enable the extension for the duration of the connection. Note that once an
extension is enabled, there is no way to disable it.

If the ENABLE command is successful, the server send an untagged ENABLED response
Section 7.2.1, which includes all enabled extensions as specified above. The ENABLED response is
sent even if no extensions were enabled.

Clients only include extensions that need to be enabled by the server. For example, a
client can enable IMAP4rev2 specific behaviour when both IMAP4rev1 and IMAP4rev2 are
advertised in the CAPABILITY response. Future RFCs may add to this list.

The ENABLE command is only valid in the authenticated state, before any mailbox is selected.
Clients issue ENABLE once they SELECT/EXAMINE a mailbox; however, server
implementations don't have to check that no mailbox is selected or was previously selected
during the duration of a connection.

The ENABLE command can be issued multiple times in a session. It is additive; i.e., "ENABLE a b",
followed by "ENABLE c" is the same as a single command "ENABLE a b c". When multiple
ENABLE commands are issued, each corresponding ENABLED response only contain
extensions enabled by the corresponding ENABLE command, i.e. for the above example, the
ENABLED response to "ENABLE c" should not contain "a" or "b".

There are no limitations on pipelining ENABLE. For example, it is possible to send ENABLE and
then immediately SELECT, or a LOGIN immediately followed by ENABLE.

The server change the CAPABILITY list as a result of executing ENABLE; i.e., a
CAPABILITY command issued right after an ENABLE command list the same capabilities as
a CAPABILITY command issued before the ENABLE command. This is demonstrated in the
following example. Note that below "X-GOOD-IDEA" is a fictitious extension capability that can be
ENABLEd.

In the following example, the client enables CONDSTORE extension :

•
MUST

MUST

SHOULD

MUST NOT

SHOULD

MUST NOT
MUST

 C: t1 CAPABILITY
 S: * CAPABILITY IMAP4rev2 ID LITERAL+ X-GOOD-IDEA
 S: t1 OK foo
 C: t2 ENABLE CONDSTORE X-GOOD-IDEA
 S: * ENABLED X-GOOD-IDEA
 S: t2 OK foo
 C: t3 CAPABILITY
 S: * CAPABILITY IMAP4rev2 ID LITERAL+ X-GOOD-IDEA
 S: t3 OK foo again

[RFC7162]

 C: a1 ENABLE CONDSTORE
 S: * ENABLED CONDSTORE
 S: a1 OK Conditional Store enabled

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 33

Arguments:

Responses:

Result:

FLAGS

<n> EXISTS

LIST

OK [PERMANENTFLAGS (<list of flags>)]

OK [UIDNEXT <n>]

OK [UIDVALIDITY <n>]

6.3.2. SELECT Command

mailbox name

 untagged responses: FLAGS, EXISTS, LIST

 OK untagged responses: PERMANENTFLAGS, UIDNEXT, UIDVALIDITY

OK - select completed, now in selected state

NO - select failure, now in authenticated state: no such mailbox, can't access mailbox

BAD - command unknown or arguments invalid

The SELECT command selects a mailbox so that messages in the mailbox can be accessed. Before
returning an OK to the client, the server send the following untagged data to the client.
(The order of individual responses is not important.) Note that earlier versions of this protocol
(e.g. IMAP4rev1 version specified in RFC 2060) only required the FLAGS and EXISTS untagged
responses and UIDVALIDITY response code; consequently, client implementations
implement default behavior for missing data as discussed with the individual item.

Defined flags in the mailbox. See the description of the FLAGS response in Section 7.3.5
for more detail.

The number of messages in the mailbox. See the description of the EXISTS response
in Section 7.4.1 for more detail.

The server return a LIST response with the mailbox name. The list of mailbox
attributes be accurate. If the server allows de-normalized UTF-8 mailbox names (see
Section 5.1) and the supplied mailbox name differs from the normalized version, the server

 return LIST with the OLDNAME extended data item. See Section 6.3.9.7 for more details.

A list of message flags that the client can change
permanently. If this is missing, the client should assume that all flags can be changed
permanently.

The next unique identifier value. Refer to Section 2.3.1.1 for more
information.

The unique identifier validity value. Refer to Section 2.3.1.1 for more
information.

6.3.1.1. Note to Designers of Extensions That May Use the ENABLE Command
Designers of IMAP extensions are discouraged from creating extensions that require ENABLE
unless there is no good alternative design. Specifically, extensions that cause potentially
incompatible behavior changes to deployed server responses (and thus benefit from ENABLE)
have a higher complexity cost than extensions that do not.

REQUIRED

REQUIRED

MUST

SHOULD

MUST
MUST

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 34

Only one mailbox can be selected at a time in a connection; simultaneous access to multiple
mailboxes requires multiple connections. The SELECT command automatically deselects any
currently selected mailbox before attempting the new selection. Consequently, if a mailbox is
selected and a SELECT command that fails is attempted, no mailbox is selected. When deselecting
a selected mailbox, the server return an untagged OK response with the "[CLOSED]"
response code when the currently selected mailbox is closed (see Section 7.1).

If the client is permitted to modify the mailbox, the server prefix the text of the tagged
OK response with the "[READ-WRITE]" response code.

If the client is not permitted to modify the mailbox but is permitted read access, the mailbox is
selected as read-only, and the server prefix the text of the tagged OK response to SELECT
with the "[READ-ONLY]" response code. Read-only access through SELECT differs from the
EXAMINE command in that certain read-only mailboxes permit the change of permanent
state on a per-user (as opposed to global) basis. Netnews messages marked in a server-based
.newsrc file are an example of such per-user permanent state that can be modified with read-
only mailboxes.

Example:

Example:

MUST

SHOULD

MUST

MAY

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * LIST () "/" INBOX
 S: A142 OK [READ-WRITE] SELECT completed

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: A142 OK [READ-WRITE] SELECT completed
 [...some time later...]
 C: A143 SELECT Drafts
 S: * OK [CLOSED] Previous mailbox is now closed
 S: * 5 EXISTS
 S: * OK [UIDVALIDITY 9877410381] UIDs valid
 S: * OK [UIDNEXT 102] Predicted next UID
 S: * LIST () "/" Drafts
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen \Answered
 \Flagged \Draft *)] System flags and keywords allowed
 S: A143 OK [READ-WRITE] SELECT completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 35

Arguments:

Responses:

Result:

Arguments:

Responses:

Result:

Note that IMAP4rev1 compliant servers can also send the untagged RECENT response which was
deprecated in IMAP4rev2. E.g. "* 0 RECENT". Pure IMAP4rev2 clients are advised to ignore the
untagged RECENT response.

6.3.3. EXAMINE Command

mailbox name

 untagged responses: FLAGS, EXISTS, LIST

 OK untagged responses: PERMANENTFLAGS,

UIDNEXT, UIDVALIDITY

OK - examine completed, now in selected state

NO - examine failure, now in authenticated state: no

such mailbox, can't access mailbox BAD - command unknown or arguments invalid

The EXAMINE command is identical to SELECT and returns the same output; however, the
selected mailbox is identified as read-only. No changes to the permanent state of the mailbox,
including per-user state, are permitted.

The text of the tagged OK response to the EXAMINE command begin with the "[READ-
ONLY]" response code.

Example:

6.3.4. CREATE Command

mailbox name

 untagged response: LIST

OK - create completed

NO - create failure: can't create mailbox with that name

BAD - command unknown or arguments invalid

REQUIRED

REQUIRED

MUST

 C: A932 EXAMINE blurdybloop
 S: * 17 EXISTS
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * LIST () "/" blurdybloop
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS ()] No permanent flags permitted
 S: A932 OK [READ-ONLY] EXAMINE completed

OPTIONAL

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 36

The CREATE command creates a mailbox with the given name. An OK response is returned only
if a new mailbox with that name has been created. It is an error to attempt to create INBOX or a
mailbox with a name that refers to an extant mailbox. Any error in creation will return a tagged
NO response. If a client attempts to create a UTF-8 mailbox name that is not a valid Net-Unicode
name, the server reject the creation or convert the name to Net-Unicode prior to creating
the mailbox. If the server decides to convert (normalize) the name, it return an
untagged LIST with OLDNAME extended data item, with the OLDNAME value being the supplied
mailbox name and the name parameter being the normalized mailbox name. (See Section 6.3.9.7
for more details.)

Mailboxes created in one IMAP session be announced to other IMAP sessions using
unsolicited LIST response. If the server automatically subscribes a mailbox when it is created,
then the unsolicited LIST response for each affected subscribed mailbox name include the
\Subscribed attribute.

If the mailbox name is suffixed with the server's hierarchy separator character (as returned from
the server by a LIST command), this is a declaration that the client intends to create mailbox
names under this name in the hierarchy. Server implementations that do not require this
declaration ignore the declaration. In any case, the name created is without the trailing
hierarchy delimiter.

If the server's hierarchy separator character appears elsewhere in the name, the server
create any superior hierarchical names that are needed for the CREATE command to be
successfully completed. In other words, an attempt to create "foo/bar/zap" on a server in which
"/" is the hierarchy separator character create foo/ and foo/bar/ if they do not already
exist.

If a new mailbox is created with the same name as a mailbox which was deleted, its unique
identifiers be greater than any unique identifiers used in the previous incarnation of the
mailbox unless the new incarnation has a different unique identifier validity value. See the
description of the UID command in Section 6.4.9 for more detail.

Example:

(In the last example, imagine that "NonNormalized" is a non NFC normalized Unicode mailbox
name and that "Normalized" is its NFC normalized version.)

Note: The interpretation of this example depends on whether "/" was returned as the
hierarchy separator from LIST. If "/" is the hierarchy separator, a new level of hierarchy

MUST
SHOULD

MAY

MUST

MUST

SHOULD

SHOULD

MUST

 C: A003 CREATE owatagusiam/
 S: A003 OK CREATE completed
 C: A004 CREATE owatagusiam/blurdybloop
 S: A004 OK CREATE completed
 C: A005 CREATE NonNormalized
 S: * LIST () "/" "Normalized" ("OLDNAME" ("NonNormalized"))
 S: A005 OK CREATE completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 37

Arguments:

Responses:

Result:

named "owatagusiam" with a member called "blurdybloop" is created. Otherwise, two
mailboxes at the same hierarchy level are created.

6.3.5. DELETE Command

mailbox name

 untagged response: LIST

OK - delete completed

NO - delete failure: can't delete mailbox with that name

BAD - command unknown or arguments invalid

The DELETE command permanently removes the mailbox with the given name. A tagged OK
response is returned only if the mailbox has been deleted. It is an error to attempt to delete
INBOX or a mailbox name that does not exist.

The DELETE command remove inferior hierarchical names. For example, if a mailbox
"foo" has an inferior "foo.bar" (assuming "." is the hierarchy delimiter character), removing "foo"

 remove "foo.bar". It is an error to attempt to delete a name that has inferior
hierarchical names and also has the \Noselect mailbox name attribute (see the description of the
LIST response (Section 7.3.1) for more details).

It is permitted to delete a name that has inferior hierarchical names and does not have the
\Noselect mailbox name attribute. If the server implementation does not permit deleting the
name while inferior hierarchical names exists then it disallow the DELETE command by
returning a tagged NO response. The NO response include the HASCHILDREN response
code. Alternatively the server allow the DELETE command, but sets the \Noselect mailbox
name attribute for that name.

If the server returns OK response, all messages in that mailbox are removed by the DELETE
command.

The value of the highest-used unique identifier of the deleted mailbox be preserved so that
a new mailbox created with the same name will not reuse the identifiers of the former
incarnation, unless the new incarnation has a different unique identifier validity value. See the
description of the UID command in Section 6.4.9 for more detail.

If the server decides to convert (normalize) the mailbox name, it return an untagged
LIST with the "\NonExistent" attribute and OLDNAME extended data item, with the OLDNAME
value being the supplied mailbox name and the name parameter being the normalized mailbox
name. (See Section 6.3.9.7 for more details.)

Mailboxes deleted in one IMAP session be announced to other IMAP sessions using
unsolicited LIST response, containing the "\NonExistent" attribute.

OPTIONAL

MUST NOT

MUST NOT

SHOULD
SHOULD

MAY

MUST

SHOULD

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 38

Arguments:

Responses:

Result:

Example:

Example:

6.3.6. RENAME Command

existing mailbox name

new mailbox name

 untagged response: LIST

OK - rename completed

NO - rename failure: can't rename mailbox with that name,

can't rename to mailbox with that name

BAD - command unknown or arguments invalid

 C: A682 LIST "" *
 S: * LIST () "/" blurdybloop
 S: * LIST (\Noselect) "/" foo
 S: * LIST () "/" foo/bar
 S: A682 OK LIST completed
 C: A683 DELETE blurdybloop
 S: A683 OK DELETE completed
 C: A684 DELETE foo
 S: A684 NO Name "foo" has inferior hierarchical names
 C: A685 DELETE foo/bar
 S: A685 OK DELETE Completed
 C: A686 LIST "" *
 S: * LIST (\Noselect) "/" foo
 S: A686 OK LIST completed
 C: A687 DELETE foo
 S: A687 OK DELETE Completed

 C: A82 LIST "" *
 S: * LIST () "." blurdybloop
 S: * LIST () "." foo
 S: * LIST () "." foo.bar
 S: A82 OK LIST completed
 C: A83 DELETE blurdybloop
 S: A83 OK DELETE completed
 C: A84 DELETE foo
 S: A84 OK DELETE Completed
 C: A85 LIST "" *
 S: * LIST () "." foo.bar
 S: A85 OK LIST completed
 C: A86 LIST "" %
 S: * LIST (\Noselect) "." foo
 S: A86 OK LIST completed

OPTIONAL

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 39

The RENAME command changes the name of a mailbox. A tagged OK response is returned only if
the mailbox has been renamed. It is an error to attempt to rename from a mailbox name that
does not exist or to a mailbox name that already exists. Any error in renaming will return a
tagged NO response.

If the name has inferior hierarchical names, then the inferior hierarchical names also be
renamed. For example, a rename of "foo" to "zap" will rename "foo/bar" (assuming "/" is the
hierarchy delimiter character) to "zap/bar".

If the server's hierarchy separator character appears in the new mailbox name, the server
 create any superior hierarchical names that are needed for the RENAME command to

complete successfully. In other words, an attempt to rename "foo/bar/zap" to baz/rag/zowie on a
server in which "/" is the hierarchy separator character in the corresponding namespace
create baz/ and baz/rag/ if they do not already exist.

The value of the highest-used unique identifier of the old mailbox name be preserved so
that a new mailbox created with the same name will not reuse the identifiers of the former
incarnation, unless the new incarnation has a different unique identifier validity value. See the
description of the UID command in Section 6.4.9 for more detail.

Renaming INBOX is permitted (i.e. it doesn't result in a tagged BAD response), and has special
behavior. (Note that some servers disallow renaming INBOX by returning a tagged NO response,
so clients need to be able to handle such RENAME failing). It moves all messages in INBOX to a
new mailbox with the given name, leaving INBOX empty. If the server implementation supports
inferior hierarchical names of INBOX, these are unaffected by a rename of INBOX.

If the server allows creation of mailboxes with names that are not valid Net-Unicode names, the
server normalizes both the existing mailbox name parameter and the new mailbox name
parameter. If the normalized version of any of these 2 parameters differs from the
corresponding supplied version, the server return an untagged LIST response with
OLDNAME extended data item, with the OLDNAME value being the supplied existing mailbox
name and the name parameter being the normalized new mailbox name (see Section 6.3.9.7).
This would allow the client to correlate the supplied name with the normalized name.

Mailboxes renamed in one IMAP session be announced to other IMAP sessions using
unsolicited LIST response with OLDNAME extended data item.

In both of the above cases: if the server automatically subscribes a mailbox when it is renamed,
then the unsolicited LIST response for each affected subscribed mailbox name include the
\Subscribed attribute. No unsolicited LIST responses need to be sent for children mailboxes, if
any. When INBOX is successfully renamed, a new INBOX is assumed to be created. No unsolicited
LIST responses need to be sent for INBOX in this case.

MUST

SHOULD

SHOULD

MUST

SHOULD

MAY

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 40

Arguments:

Responses:

Result:

Examples:

Note that renaming a mailbox doesn't update subscription information on the original name. To
keep subscription information in sync, the following sequence of commands can be used:

Note that the above sequence of commands doesn't account for updating subscription for any
children mailboxes of mailbox X.

6.3.7. SUBSCRIBE Command

mailbox

no specific responses for this command

OK - subscribe completed

NO - subscribe failure: can't subscribe to that name

BAD - command unknown or arguments invalid

 C: A682 LIST "" *
 S: * LIST () "/" blurdybloop
 S: * LIST (\Noselect) "/" foo
 S: * LIST () "/" foo/bar
 S: A682 OK LIST completed
 C: A683 RENAME blurdybloop sarasoop
 S: A683 OK RENAME completed
 C: A684 RENAME foo zowie
 S: A684 OK RENAME Completed
 C: A685 LIST "" *
 S: * LIST () "/" sarasoop
 S: * LIST (\Noselect) "/" zowie
 S: * LIST () "/" zowie/bar
 S: A685 OK LIST completed

 C: Z432 LIST "" *
 S: * LIST () "." INBOX
 S: * LIST () "." INBOX.bar
 S: Z432 OK LIST completed
 C: Z433 RENAME INBOX old-mail
 S: Z433 OK RENAME completed
 C: Z434 LIST "" *
 S: * LIST () "." INBOX
 S: * LIST () "." INBOX.bar
 S: * LIST () "." old-mail
 S: Z434 OK LIST completed

 C: 1001 RENAME X Y
 C: 1002 SUBSCRIBE Y
 C: 1003 UNSUBSCRIBE X

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 41

Arguments:

Responses:

Result:

The SUBSCRIBE command adds the specified mailbox name to the server's set of "active" or
"subscribed" mailboxes as returned by the LIST (SUBSCRIBED) command. This command returns
a tagged OK response if the subscription is successful or if the mailbox is already subscribed.

A server validate the mailbox argument to SUBSCRIBE to verify that it exists. However, it
 unilaterally remove an existing mailbox name from the subscription list even if a

mailbox by that name no longer exists.

Note: This requirement is because a server site can choose to routinely remove a mailbox
with a well-known name (e.g., "system-alerts") after its contents expire, with the intention of
recreating it when new contents are appropriate.

Example:

6.3.8. UNSUBSCRIBE Command

mailbox name

no specific responses for this command

OK - unsubscribe completed

NO - unsubscribe failure: can't unsubscribe that name

BAD - command unknown or arguments invalid

The UNSUBSCRIBE command removes the specified mailbox name from the server's set of
"active" or "subscribed" mailboxes as returned by the LIST (SUBSCRIBED) command. This
command returns a tagged OK response if the unsubscription is successful or if the mailbox is
not subscribed.

Example:

MAY
SHOULD NOT

 C: A002 SUBSCRIBE #news.comp.mail.mime
 S: A002 OK SUBSCRIBE completed

 C: A002 UNSUBSCRIBE #news.comp.mail.mime
 S: A002 OK UNSUBSCRIBE completed

Arguments (basic):

Arguments (extended):

6.3.9. LIST Command

reference name

mailbox name with possible wildcards

selection options ()

reference name

OPTIONAL

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 42

Responses:

Result:

mailbox patterns

return options ()

untagged responses: LIST

OK - list completed

NO - list failure: can't list that reference or mailbox name

BAD - command unknown or arguments invalid

The LIST command returns a subset of mailbox names from the complete set of all mailbox
names available to the client. Zero or more untagged LIST responses are returned, containing the
name attributes, hierarchy delimiter, name, and possible extension information; see the
description of the LIST response (Section 7.3.1) for more detail.

The LIST command return its data quickly, without undue delay. For example, it should
not go to excess trouble to calculate the \Marked or \Unmarked status or perform other
processing; if each name requires 1 second of processing, then a list of 1200 names would take 20
minutes!

The extended LIST command, originally introduced in , provides capabilities beyond
that of the original IMAP LIST command. The extended syntax is being used if one or more of the
following conditions is true:

if the first word after the command name begins with a parenthesis ("LIST selection
options");
if the second word after the command name begins with a parenthesis;
if the LIST command has more than 2 parameters ("LIST return options")

An empty ("" string) reference name argument indicates that the mailbox name is interpreted as
by SELECT. The returned mailbox names match the supplied mailbox name pattern(s). A
non-empty reference name argument is the name of a mailbox or a level of mailbox hierarchy,
and indicates the context in which the mailbox name is interpreted. Clients use the
empty reference argument.

In the basic syntax only, an empty ("" string) mailbox name argument is a special request to
return the hierarchy delimiter and the root name of the name given in the reference. The value
returned as the root be the empty string if the reference is non-rooted or is an empty string.
In all cases, a hierarchy delimiter (or NIL if there is no hierarchy) is returned. This permits a
client to get the hierarchy delimiter (or find out that the mailbox names are flat) even when no
mailboxes by that name currently exist.

In the extended syntax, any mailbox name arguments that are empty strings are ignored. There
is no special meaning for empty mailbox names when the extended syntax is used.

OPTIONAL

SHOULD

[RFC5258]

1.

2.
3.

MUST

SHOULD

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 43

The reference and mailbox name arguments are interpreted into a canonical form that
represents an unambiguous left-to-right hierarchy. The returned mailbox names will be in the
interpreted form, that we call "canonical LIST pattern" later in this document. To define the term
"canonical LIST pattern" formally: it refers to the canonical pattern constructed internally by the
server from the reference and mailbox name arguments.

Note: The interpretation of the reference argument is implementation-defined. It depends
upon whether the server implementation has a concept of the "current working directory"
and leading "break out characters", which override the current working directory.

For example, on a server which exports a UNIX or NT filesystem, the reference argument
contains the current working directory, and the mailbox name argument would contain the
name as interpreted in the current working directory.

If a server implementation has no concept of break out characters, the canonical form is
normally the reference name appended with the mailbox name. Note that if the server
implements the namespace convention (Section 5.1.2.1), "#" is a break out character and
must be treated as such.

If the reference argument is not a level of mailbox hierarchy (that is, it is a \NoInferiors
name), and/or the reference argument does not end with the hierarchy delimiter, it is
implementation-dependent how this is interpreted. For example, a reference of "foo/bar" and
mailbox name of "rag/baz" could be interpreted as "foo/bar/rag/baz", "foo/barrag/baz", or
"foo/rag/baz". A client use such a reference argument except at the explicit
request of the user. A hierarchical browser make any assumptions about server
interpretation of the reference unless the reference is a level of mailbox hierarchy AND ends
with the hierarchy delimiter.

Any part of the reference argument that is included in the interpreted form prefix the
interpreted form. It also be in the same form as the reference name argument. This rule
permits the client to determine if the returned mailbox name is in the context of the reference
argument, or if something about the mailbox argument overrode the reference argument.
Without this rule, the client would have to have knowledge of the server's naming semantics
including what characters are "breakouts" that override a naming context.

Here are some examples of how references and mailbox names might be interpreted on a UNIX-
based server:

SHOULD NOT
MUST NOT

SHOULD
SHOULD

 Reference Mailbox Name Interpretation
 ------------ ------------ --------------
 ~smith/Mail/ foo.* ~smith/Mail/foo.*
 archive/ % archive/%
 #news. comp.mail.* #news.comp.mail.*
 ~smith/Mail/ /usr/doc/foo /usr/doc/foo
 archive/ ~fred/Mail/* ~fred/Mail/*

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 44

The first three examples above demonstrate interpretations in the context of the reference
argument. Note that "~smith/Mail" be transformed into something like "/u2/users/
smith/Mail", or it would be impossible for the client to determine that the interpretation was in
the context of the reference.

The character "*" is a wildcard, and matches zero or more characters at this position. The
character "%" is similar to "*", but it does not match a hierarchy delimiter. If the "%" wildcard is
the last character of a mailbox name argument, matching levels of hierarchy are also returned. If
these levels of hierarchy are not also selectable mailboxes, they are returned with the \Noselect
mailbox name attribute (see the description of the LIST response (Section 7.3.1) for more details).

Any syntactically valid pattern that is not accepted by a server for any reason be silently
ignored. I.e. it results in no LIST responses and the LIST command still returns tagged OK
response.

Selection options tell the server to limit the mailbox names that are selected by the LIST
operation. If selection options are used, the mailboxes returned are those that match both the list
of canonical LIST patterns and the selection options. Unless a particular selection option provides
special rules, the selection options are cumulative: a mailbox that matches the mailbox patterns
is selected only if it also matches all of the selection options. (An example of a selection option
with special rules is the RECURSIVEMATCH option.)

Return options control what information is returned for each matched mailbox. Return options
 cause the server to report information about additional mailbox names other than

those that match the canonical LIST patterns and selection options. If no return options are
specified, the client is only expecting information about mailbox attributes. The server
return other information about the matched mailboxes, and clients be able to handle that
situation.

Initial selection options and return options are defined in the following subsections, and new
ones will also be defined in extensions. Initial options defined in this document be
supported. Each non-initial option will be enabled by a capability string (one capability may
enable multiple options), and a client send an option for which the server has not
advertised support. A server respond to options it does not recognize with a BAD response.
The client specify any option more than once; however, if the client does this, the
server act as if it received the option only once. The order in which options are specified by
the client is not significant.

In general, each selection option except RECURSIVEMATCH will have a corresponding return
option with the same name. The REMOTE selection option is an anomaly in this regard, and does
not have a corresponding return option. That is because it expands, rather than restricts, the set
of mailboxes that are returned. Future extensions to this specification should keep this
parallelism in mind and define a pair of corresponding selection and return options.

SHOULD NOT

MUST

MUST NOT

MAY
MUST

MUST

MUST NOT
MUST

SHOULD NOT
MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 45

Server implementations are permitted to "hide" otherwise accessible mailboxes from the
wildcard characters, by preventing certain characters or names from matching a wildcard in
certain situations. For example, a UNIX-based server might restrict the interpretation of "*" so
that an initial "/" character does not match.

The special name INBOX is included in the output from LIST, if INBOX is supported by this server
for this user and if the uppercase string "INBOX" matches the interpreted reference and mailbox
name arguments with wildcards as described above. The criteria for omitting INBOX is whether
SELECT INBOX will return failure; it is not relevant whether the user's real INBOX resides on this
or some other server.

SUBSCRIBED -

REMOTE -

RECURSIVEMATCH -

6.3.9.1. LIST Selection Options
The selection options defined in this specification are as follows:

causes the LIST command to list subscribed names, rather than the existing
mailboxes. This will often be a subset of the actual mailboxes. It's also possible for this list to
contain the names of mailboxes that don't exist. In any case, the list include exactly
those mailbox names that match the canonical list pattern and are subscribed to.

This option defines a mailbox attribute, "\Subscribed", that indicates that a mailbox name is
subscribed to. The "\Subscribed" attribute be supported and be accurately
computed when the SUBSCRIBED selection option is specified.

Note that the SUBSCRIBED selection option implies the SUBSCRIBED return option (see below).

causes the LIST command to show remote mailboxes as well as local ones, as
described in . This option is intended to replace the RLIST command and, in
conjunction with the SUBSCRIBED selection option, the RLSUB command. Servers that don't
support the concept of remote mailboxes just ignore this option.

This option defines a mailbox attribute, "\Remote", that indicates that a mailbox is a remote
mailbox. The "\Remote" attribute be accurately computed when the REMOTE option is
specified.

The REMOTE selection option has no interaction with other options. Its effect is to tell the
server to apply the other options, if any, to remote mailboxes, in addition to local ones. In
particular, it has no interaction with RECURSIVEMATCH (see below). A request for (REMOTE
RECURSIVEMATCH) is invalid, because a request for (RECURSIVEMATCH) is also invalid. A
request for (REMOTE RECURSIVEMATCH SUBSCRIBED) is asking for all subscribed mailboxes,
both local and remote.

this option forces the server to return information about parent mailboxes
that don't match other selection options, but have some submailboxes that do. Information
about children is returned in the CHILDINFO extended data item, as described in Section
6.3.9.6.

MUST

MUST MUST

[RFC2193]

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 46

Note 1: In order for a parent mailbox to be returned, it still has to match the canonical LIST
pattern.

Note 2: When returning the CHILDINFO extended data item, it doesn't matter whether or not
the submailbox matches the canonical LIST pattern. See also example 9 in Section 6.3.9.8.

The RECURSIVEMATCH option occur as the only selection option (or only with
REMOTE), as it only makes sense when other selection options are also used. The server
return BAD tagged response in such case.

Note that even if the RECURSIVEMATCH option is specified, the client still be able to
handle a case when a CHILDINFO extended data item is returned and there are no
submailboxes that meet the selection criteria of the subsequent LIST command, as they can be
deleted/renamed after the LIST response was sent, but before the client had a chance to access
them.

MUST NOT
MUST

MUST

SUBSCRIBED -

CHILDREN -

STATUS -

6.3.9.2. LIST Return Options
The return options defined in this specification are as follows:

causes the LIST command to return subscription state for all matching mailbox
names. The "\Subscribed" attribute be supported and be accurately computed
when the SUBSCRIBED return option is specified. Further, all other mailbox attributes
be accurately computed (this differs from the behavior of the obsolete LSUB command from
RFC 3501). Note that the above requirements don't override the requirement for the LIST
command to return results quickly (see Section 6.3.9), i.e. server implementations need to
compute results quickly and accurately. For example, server implementors might need to
create quick access indices.

requests mailbox child information as originally proposed in . See
Section 6.3.9.5, below, for details.

requests STATUS response for each matching mailbox.

This option takes STATUS data items as parameters. For each selectable mailbox matching
the list pattern and selection options, the server return an untagged LIST response
followed by an untagged STATUS response containing the information requested in the
STATUS return option, except for some cases described below.

If an attempted STATUS for a listed mailbox fails because the mailbox can't be selected
(e.g., if the "l" ACL right is granted to the mailbox and the "r" right is not
granted, or due to a race condition between LIST and STATUS changing the mailbox to
\NoSelect), the STATUS response be returned and the LIST response
include the \NoSelect attribute. This means the server may have to buffer the LIST reply
until it has successfully looked up the necessary STATUS information.

If the server runs into unexpected problems while trying to look up the STATUS
information, it drop the corresponding STATUS reply. In such a situation, the LIST
command would still return a tagged OK reply.

MUST MUST
MUST

[RFC3348]

MUST

[RFC4314]

MUST NOT MUST

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 47

6.3.9.4. Additional LIST-related Requirements on Clients
All clients treat a LIST attribute with a stronger meaning as implying any attribute that can
be inferred from it. (See Section 7.3.1 for the list of currently defined attributes). For example, the
client must treat the presence of the \NoInferiors attribute as if the \HasNoChildren attribute was
also sent by the server.

The following table summarizes inference rules.

returned attribute implied attribute

\NoInferiors \HasNoChildren

\NonExistent \NoSelect

Table 1

6.3.9.3. General Principles for Returning LIST Responses
This section outlines several principles that can be used by server implementations of this
document to decide whether a LIST response should be returned, as well as how many responses
and what kind of information they may contain.

At most one LIST response should be returned for each mailbox name that matches the
canonical LIST pattern. Server implementors must not assume that clients will be able to
assemble mailbox attributes and other information returned in multiple LIST responses.
There are only two reasons for including a matching mailbox name in the responses to the
LIST command (note that the server is allowed to return unsolicited responses at any time,
and such responses are not governed by this rule):

The mailbox name also satisfies the selection criteria.
The mailbox name doesn't satisfy the selection criteria, but it has at least one descendant
mailbox name that satisfies the selection criteria and that doesn't match the canonical LIST
pattern.

For more information on this case, see the CHILDINFO extended data item described in
Section 6.3.9.6. Note that the CHILDINFO extended data item can only be returned when
the RECURSIVEMATCH selection option is specified.

Attributes returned in the same LIST response are treated additively. For example, the
following response

S: * LIST (\Subscribed \NonExistent) "/" "Fruit/Peach"

means that the "Fruit/Peach" mailbox doesn't exist, but it is subscribed.

1.

2.

a.
b.

3.

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 48

6.3.9.5. The CHILDREN Return Option
The CHILDREN return option is simply an indication that the client wants information about
whether or not mailboxes contain children mailboxes; a server provide it even if the option
is not specified.

Many IMAP4 clients present to the user a hierarchical view of the mailboxes that a user has
access to. Rather than initially presenting to the user the entire mailbox hierarchy, it is often
preferable to show to the user a collapsed outline list of the mailbox hierarchy (particularly if
there is a large number of mailboxes). The user can then expand the collapsed outline hierarchy
as needed. It is common to include within the collapsed hierarchy a visual clue (such as a ''+'') to
indicate that there are child mailboxes under a particular mailbox. When the visual clue is
clicked, the hierarchy list is expanded to show the child mailboxes. The CHILDREN return option
provides a mechanism for a client to efficiently determine whether a particular mailbox has
children, without issuing a LIST "" * or a LIST "" % for each mailbox name. The CHILDREN return
option defines two new attributes that be returned within a LIST response: \HasChildren
and \HasNoChildren. Although these attributes be returned in response to any LIST
command, the CHILDREN return option is provided to indicate that the client particularly wants
this information. If the CHILDREN return option is present, the server return these
attributes even if their computation is expensive.

\HasChildren \HasNoChildren

The presence of this attribute indicates that the mailbox has child mailboxes. A server
 set this attribute if there are child mailboxes and the user does not have

permission to access any of them. In this case, \HasNoChildren be used. In many
cases, however, a server may not be able to efficiently compute whether a user has access to
any child mailbox. Note that even though the \HasChildren attribute for a mailbox must be
correct at the time of processing of the mailbox, a client must be prepared to deal with a
situation when a mailbox is marked with the \HasChildren attribute, but no child mailbox
appears in the response to the LIST command. This might happen, for example, due to
children mailboxes being deleted or made inaccessible to the user (using access control) by
another client before the server is able to list them.

The presence of this attribute indicates that the mailbox has NO child mailboxes that are
accessible to the currently authenticated user.

It is an error for the server to return both a \HasChildren and a \HasNoChildren attribute in the
same LIST response.

Note: the \HasNoChildren attribute should not be confused with the the \NoInferiors attribute,
which indicates that no child mailboxes exist now and none can be created in the future.

MAY

MUST
MAY

MUST

SHOULD NOT
SHOULD

6.3.9.6. CHILDINFO Extended Data Item
The CHILDINFO extended data item be returned unless the client has specified the
RECURSIVEMATCH selection option.

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 49

The CHILDINFO extended data item in a LIST response describes the selection criteria that has
caused it to be returned and indicates that the mailbox has at least one descendant mailbox that
matches the selection criteria.

Note: Some servers allow for mailboxes to exist without requiring their parent to exist. For
example, a mailbox "Customers/ABC" can exist while the mailbox "Customers" does not. As
CHILDINFO extended data item is not allowed if the RECURSIVEMATCH selection option is not
specified, such servers use the "\NonExistent \HasChildren" attribute pair to signal to the
client that there is a descendant mailbox that matches the selection criteria. See example 11 in
Section 6.3.9.8.

The returned selection criteria allow the client to distinguish a solicited response from an
unsolicited one, as well as to distinguish among solicited responses caused by multiple pipelined
LIST commands that specify different criteria.

Servers only return a non-matching mailbox name along with CHILDINFO if at least one
matching child is not also being returned. That is, servers suppress redundant
CHILDINFO responses.

Examples 8 and 10 in Section 6.3.9.8 demonstrate the difference between present CHILDINFO
extended data item and the "\HasChildren" attribute.

The following table summarizes interaction between the "\NonExistent" attribute and
CHILDINFO (the first column indicates whether the parent mailbox exists):

exists meets the
selection
criteria

has a child that meets
the selection criteria

returned IMAP4rev2/LIST-
EXTENDED attributes and

CHILDINFO

no no no no LIST response returned

yes no no no LIST response returned

no yes no (\NonExistent <attr>)

yes yes no (<attr>)

no no yes (\NonExistent) + CHILDINFO

yes no yes () + CHILDINFO

no yes yes (\NonExistent <attr>) + CHILDINFO

yes yes yes (<attr>) + CHILDINFO

Table 2

where <attr> is one or more attributes that correspond to the selection criteria; for example, for
the SUBSCRIBED option the <attr> is \Subscribed.

SHOULD

SHOULD
SHOULD

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 50

6.3.9.7. OLDNAME Extended Data Item
The OLDNAME extended data item is included when a mailbox name is created (with CREATE
command), renamed (with RENAME command) or deleted (with DELETE command). (When a
mailbox is deleted the "\NonExistent" attribute is also included.) IMAP extensions can specify
other conditions when OLDNAME extended data item should be included.

If the server allows de-normalized mailbox names (see Section 5.1) in SELECT/EXAMINE,
CREATE, RENAME or DELETE, it return an unsolicited LIST response that includes
OLDNAME extended data item, whenever the supplied mailbox name differs from the resulting
normalized mailbox name. From the client point of view this is indistinguishable from another
user renaming or deleting the mailbox, as specified in the previous paragraph.

SHOULD

 A deleted mailbox can be announced like this:

 S: * LIST (\NonExistent) "." "INBOX.DeletedMailbox"

 Example of a renamed mailbox:

 S: * LIST () "/" "NewMailbox" ("OLDNAME" ("OldMailbox"))

1:

6.3.9.8. LIST Command Examples
This example shows some uses of the basic LIST command:

Extended examples:

 Example: C: A101 LIST "" ""
 S: * LIST (\Noselect) "/" ""
 S: A101 OK LIST Completed
 C: A102 LIST #news.comp.mail.misc ""
 S: * LIST (\Noselect) "." #news.
 S: A102 OK LIST Completed
 C: A103 LIST /usr/staff/jones ""
 S: * LIST (\Noselect) "/" /
 S: A103 OK LIST Completed
 C: A202 LIST ~/Mail/ %
 S: * LIST (\Noselect) "/" ~/Mail/foo
 S: * LIST () "/" ~/Mail/meetings
 S: A202 OK LIST completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 51

2:

3:

The first example shows the complete local hierarchy that will be used for the other
examples.

In the next example, we will see the subscribed mailboxes. This is similar to, but not
equivalent with now deprecated, <LSUB "" "*"> (see for more details on LSUB
command). Note that the mailbox called "Fruit/Peach" is subscribed to, but does not
actually exist (perhaps it was deleted while still subscribed). The "Fruit" mailbox is not
subscribed to, but it has two subscribed children. The "Vegetable" mailbox is subscribed
and has two children; one of them is subscribed as well.

The next example shows the use of the CHILDREN option. The client, without having to list
the second level of hierarchy, now knows which of the top-level mailboxes have
submailboxes (children) and which do not. Note that it's not necessary for the server to
return the \HasNoChildren attribute for the inbox, because the \NoInferiors attribute
already implies that, and has a stronger meaning.

 C: A01 LIST "" "*"
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST () "/" "Fruit"
 S: * LIST () "/" "Fruit/Apple"
 S: * LIST () "/" "Fruit/Banana"
 S: * LIST () "/" "Tofu"
 S: * LIST () "/" "Vegetable"
 S: * LIST () "/" "Vegetable/Broccoli"
 S: * LIST () "/" "Vegetable/Corn"
 S: A01 OK done

[RFC3501]

 C: A02 LIST (SUBSCRIBED) "" "*"
 S: * LIST (\Marked \NoInferiors \Subscribed) "/" "inbox"
 S: * LIST (\Subscribed) "/" "Fruit/Banana"
 S: * LIST (\Subscribed \NonExistent) "/" "Fruit/Peach"
 S: * LIST (\Subscribed) "/" "Vegetable"
 S: * LIST (\Subscribed) "/" "Vegetable/Broccoli"
 S: A02 OK done

 C: A03 LIST () "" "%" RETURN (CHILDREN)
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST (\HasChildren) "/" "Fruit"
 S: * LIST (\HasNoChildren) "/" "Tofu"
 S: * LIST (\HasChildren) "/" "Vegetable"
 S: A03 OK done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 52

4:

5:

6:

7:

In this example, we see more mailboxes that reside on another server. This is similar to the
command <RLIST "" "%">.

The following example also requests the server to include mailboxes that reside on
another server. The server returns information about all mailboxes that are subscribed.
This is similar to the command <RLSUB "" "*"> (see for more details on RLSUB).
We also see the use of two selection options.

The following example requests the server to include mailboxes that reside on another
server. The server is asked to return subscription information for all returned mailboxes.
This is different from the example above.

Note that the output of this command is not a superset of the output in the previous
example, as it doesn't include LIST response for the non-existent "Fruit/Peach".

The following example demonstrates the difference between the \HasChildren attribute
and the CHILDINFO extended data item.

 C: A04 LIST (REMOTE) "" "%" RETURN (CHILDREN)
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST (\HasChildren) "/" "Fruit"
 S: * LIST (\HasNoChildren) "/" "Tofu"
 S: * LIST (\HasChildren) "/" "Vegetable"
 S: * LIST (\Remote \HasNoChildren) "/" "Bread"
 S: * LIST (\HasChildren \Remote) "/" "Meat"
 S: A04 OK done

[RFC2193]

 C: A05 LIST (REMOTE SUBSCRIBED) "" "*"
 S: * LIST (\Marked \NoInferiors \Subscribed) "/" "inbox"
 S: * LIST (\Subscribed) "/" "Fruit/Banana"
 S: * LIST (\Subscribed \NonExistent) "/" "Fruit/Peach"
 S: * LIST (\Subscribed) "/" "Vegetable"
 S: * LIST (\Subscribed) "/" "Vegetable/Broccoli"
 S: * LIST (\Remote \Subscribed) "/" "Bread"
 S: A05 OK done

 C: A06 LIST (REMOTE) "" "*" RETURN (SUBSCRIBED)
 S: * LIST (\Marked \NoInferiors \Subscribed) "/" "inbox"
 S: * LIST () "/" "Fruit"
 S: * LIST () "/" "Fruit/Apple"
 S: * LIST (\Subscribed) "/" "Fruit/Banana"
 S: * LIST () "/" "Tofu"
 S: * LIST (\Subscribed) "/" "Vegetable"
 S: * LIST (\Subscribed) "/" "Vegetable/Broccoli"
 S: * LIST () "/" "Vegetable/Corn"
 S: * LIST (\Remote \Subscribed) "/" "Bread"
 S: * LIST (\Remote) "/" "Meat"
 S: A06 OK done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 53

Let's assume there is the following hierarchy:

If the client asks RETURN (CHILDREN), it will get this:

A) Let's also assume that the mailbox "Foo/Baz" is the only subscribed mailbox. Then we
get this result:

Now, if the client issues <LIST (SUBSCRIBED) "" "%">, the server will return no mailboxes
(as the mailboxes "Moo", "Foo", and "Inbox" are NOT subscribed). However, if the client
issues this:

(i.e., the mailbox "Foo" is not subscribed, but it has a child that is.)

A1) If the mailbox "Foo" had also been subscribed, the last command would return this:

or even this:

 C: C01 LIST "" "*"
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST () "/" "Foo"
 S: * LIST () "/" "Foo/Bar"
 S: * LIST () "/" "Foo/Baz"
 S: * LIST () "/" "Moo"
 S: C01 OK done

 C: CA3 LIST "" "%" RETURN (CHILDREN)
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST (\HasChildren) "/" "Foo"
 S: * LIST (\HasNoChildren) "/" "Moo"
 S: CA3 OK done

 C: C02 LIST (SUBSCRIBED) "" "*"
 S: * LIST (\Subscribed) "/" "Foo/Baz"
 S: C02 OK done

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST () "/" "Foo" ("CHILDINFO" ("SUBSCRIBED"))
 S: C04 OK done

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST (\Subscribed) "/" "Foo" ("CHILDINFO" ("SUBSCRIBED"))
 S: C04 OK done

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST (\Subscribed \HasChildren) "/" "Foo" ("CHILDINFO"
 ("SUBSCRIBED"))
 S: C04 OK done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 54

8:

A2) If we assume instead that the mailbox "Foo" is not part of the original hierarchy and is
not subscribed, the last command will give this result:

B) Now, let's assume that no mailbox is subscribed. In this case, the command <LIST
(SUBSCRIBED RECURSIVEMATCH) "" "%"> will return no responses, as there are no
subscribed children (even though "Foo" has children).

C) And finally, suppose that only the mailboxes "Foo" and "Moo" are subscribed. In that
case, we see this result:

(which means that the mailbox "Foo" has children, but none of them is subscribed).

The following example demonstrates that the CHILDINFO extended data item is returned
whether or not children mailboxes match the canonical LIST pattern.

Let's assume there is the following hierarchy:

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST (\NonExistent) "/" "Foo" ("CHILDINFO" ("SUBSCRIBED"))
 S: C04 OK done

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%" RETURN (CHILDREN)
 S: * LIST (\HasChildren \Subscribed) "/" "Foo"
 S: * LIST (\HasNoChildren \Subscribed) "/" "Moo"
 S: C04 OK done

 C: D01 LIST "" "*"
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST () "/" "foo2"
 S: * LIST () "/" "foo2/bar1"
 S: * LIST () "/" "foo2/bar2"
 S: * LIST () "/" "baz2"
 S: * LIST () "/" "baz2/bar2"
 S: * LIST () "/" "baz2/bar22"
 S: * LIST () "/" "baz2/bar222"
 S: * LIST () "/" "eps2"
 S: * LIST () "/" "eps2/mamba"
 S: * LIST () "/" "qux2/bar2"
 S: D01 OK done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 55

And that the following mailboxes are subscribed:

The client issues the following command first:

and the server may also include (but this would violate a in Section 3.5,
because CHILDINFO is redundant)

The CHILDINFO extended data item is returned for mailboxes "foo2", "baz2", and "eps2",
because all of them have subscribed children, even though for the mailbox "foo2" only one
of the two subscribed children matches the pattern, for the mailbox "baz2" all the
subscribed children match the pattern, and for the mailbox "eps2" none of the subscribed
children matches the pattern.

Note that if the client issues

 C: D02 LIST (SUBSCRIBED) "" "*"
 S: * LIST (\Subscribed) "/" "foo2/bar1"
 S: * LIST (\Subscribed) "/" "foo2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar22"
 S: * LIST (\Subscribed) "/" "baz2/bar222"
 S: * LIST (\Subscribed) "/" "eps2"
 S: * LIST (\Subscribed) "/" "eps2/mamba"
 S: * LIST (\Subscribed) "/" "qux2/bar2"
 S: D02 OK done

 C: D03 LIST (RECURSIVEMATCH SUBSCRIBED) "" "*2"
 S: * LIST () "/" "foo2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "foo2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar22"
 S: * LIST (\Subscribed) "/" "baz2/bar222"
 S: * LIST (\Subscribed) "/" "eps2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "qux2/bar2"
 S: D03 OK done

SHOULD NOT

 S: * LIST () "/" "baz2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\NonExistent) "/" "qux2" ("CHILDINFO" ("SUBSCRIBED"))

 C: D03 LIST (RECURSIVEMATCH SUBSCRIBED) "" "*"
 S: * LIST () "/" "foo2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "foo2/bar1"
 S: * LIST (\Subscribed) "/" "foo2/bar2"
 S: * LIST () "/" "baz2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "baz2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar22"
 S: * LIST (\Subscribed) "/" "baz2/bar222"
 S: * LIST (\Subscribed) "/" "eps2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "eps2/mamba"
 S: * LIST (\Subscribed) "/" "qux2/bar2"
 S: D03 OK done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 56

9:

10:

The LIST responses for mailboxes "foo2", "baz2", and "eps2" still have the CHILDINFO
extended data item, even though this information is redundant and the client can
determine it by itself.

The following example shows usage of extended syntax for mailbox pattern. It also
demonstrates that the presence of the CHILDINFO extended data item doesn't necessarily
imply \HasChildren.

The following example shows how a server that supports missing mailbox hierarchy
elements can signal to a client that didn't specify the RECURSIVEMATCH selection option
that there is a child mailbox that matches the selection criteria.

Because "music/rock" is the only mailbox under "music", there's no need for the server to
also return "music". However clients must handle both cases.

 C: a1 LIST "" ("foo")
 S: * LIST () "/" foo
 S: a1 OK done

 C: a2 LIST (SUBSCRIBED) "" "foo/*"
 S: * LIST (\Subscribed \NonExistent) "/" foo/bar
 S: a2 OK done

 C: a3 LIST (SUBSCRIBED RECURSIVEMATCH) "" foo RETURN (CHILDREN)
 S: * LIST (\HasNoChildren) "/" foo ("CHILDINFO" ("SUBSCRIBED"))
 S: a3 OK done

 C: a1 LIST (REMOTE) "" *
 S: * LIST () "/" music/rock
 S: * LIST (\Remote) "/" also/jazz
 S: a1 OK done

 C: a2 LIST () "" %
 S: * LIST (\NonExistent \HasChildren) "/" music
 S: a2 OK done

 C: a3 LIST (REMOTE) "" %
 S: * LIST (\NonExistent \HasChildren) "/" music
 S: * LIST (\NonExistent \HasChildren) "/" also
 S: a3 OK done

 C: a3.1 LIST "" (% music/rock)
 S: * LIST () "/" music/rock
 S: a3.1 OK done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 57

Arguments:

Responses:

Result:

6.3.10. NAMESPACE Command

none

 untagged responses: NAMESPACE

OK - command completed

NO - Can't complete the command

BAD - arguments invalid

The NAMESPACE command causes a single untagged NAMESPACE response to be returned. The
untagged NAMESPACE response contains the prefix and hierarchy delimiter to the server's
Personal Namespace(s), Other Users' Namespace(s), and Shared Namespace(s) that the server
wishes to expose. The response will contain a NIL for any namespace class that is not available.
The namespace-response-extensions ABNF non terminal is defined for extensibility and be
included in the NAMESPACE response.

Example 1:

In this example a server supports a single personal namespace. No leading prefix is used on
personal mailboxes and "/" is the hierarchy delimiter.

11: The following examples show use of STATUS return option.

The "bar" mailbox isn't selectable, so it has no STATUS reply.

The LIST reply for "foo" is returned because it has matching children, but no STATUS reply
is returned because "foo" itself doesn't match the selection criteria.

 C: A01 LIST "" % RETURN (STATUS (MESSAGES UNSEEN))
 S: * LIST () "." "INBOX"
 S: * STATUS "INBOX" (MESSAGES 17 UNSEEN 16)
 S: * LIST () "." "foo"
 S: * STATUS "foo" (MESSAGES 30 UNSEEN 29)
 S: * LIST (\NoSelect) "." "bar"
 S: A01 OK List completed.

 C: A02 LIST (SUBSCRIBED RECURSIVEMATCH) "" % RETURN (STATUS
 (MESSAGES))
 S: * LIST (\Subscribed) "." "INBOX"
 S: * STATUS "INBOX" (MESSAGES 17)
 S: * LIST () "." "foo" (CHILDINFO ("SUBSCRIBED"))
 S: A02 OK List completed.

REQUIRED

MAY

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) NIL NIL
 S: A001 OK NAMESPACE command completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 58

Example 2:

A user logged on anonymously to a server. No personal mailboxes are associated with the
anonymous user and the user does not have access to the Other Users' Namespace. No prefix is
required to access shared mailboxes and the hierarchy delimiter is "."

Example 3:

A server that contains a Personal Namespace and a single Shared Namespace.

Example 4:

A server that contains a Personal Namespace, Other Users' Namespace and multiple Shared
Namespaces. Note that the hierarchy delimiter used within each namespace can be different.

The prefix string allows a client to do things such as automatically creating personal mailboxes
or LISTing all available mailboxes within a namespace.

Example 5:

A server that supports only the Personal Namespace, with a leading prefix of INBOX to personal
mailboxes and a hierarchy delimiter of "."

Although typically a server will support only a single Personal Namespace, and a single Other
User's Namespace, circumstances exist where there be multiples of these, and a client
be prepared for them. If a client is configured such that it is required to create a certain mailbox,

 C: A001 NAMESPACE
 S: * NAMESPACE NIL NIL (("" "."))
 S: A001 OK NAMESPACE command completed

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) NIL (("Public Folders/" "/"))
 S: A001 OK NAMESPACE command completed

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("~" "/")) (("#shared/" "/")
 ("#public/" "/")("#ftp/" "/")("#news." "."))
 S: A001 OK NAMESPACE command completed

 C: A001 NAMESPACE
 S: * NAMESPACE (("INBOX." ".")) NIL NIL
 S: A001 OK NAMESPACE command completed

 < Automatically create a mailbox to store sent items.>

 C: A002 CREATE "INBOX.Sent Mail"
 S: A002 OK CREATE command completed

MAY MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 59

there can be circumstances where it is unclear which Personal Namespaces it should create the
mailbox in. In these situations a client let the user select which namespaces to create the
mailbox in or just use the first personal namespace.

Example 6:

In this example, a server supports two Personal Namespaces. In addition to the regular Personal
Namespace, the user has an additional personal namespace to allow access to mailboxes in an
MH format mailstore.

The client is configured to save a copy of all mail sent by the user into a mailbox with the \Sent
attribute (see Section 7.3.1). Furthermore, after a message is deleted from a mailbox, the client is
configured to move that message to a mailbox with the \Trash attribute. The server signals with
the \NonExistent mailbox attribute that the corresponding mailboxes don't exist yet, and that it is
possible to create them. Once created, they could be used for the \Sent or \Trash purposes and the
server will no longer include the \NonExistent mailbox attribute for them.

SHOULD

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 60

Note that this example demonstrates how some extension parameters can be passed to further
describe the #mh namespace. See the fictitious "X-PARAM" extension parameter.

The next level of hierarchy following the Other Users' Namespace prefix consist of
<username>, where <username> is a user name as per the LOGIN or AUTHENTICATE command.

A client can construct a LIST command by appending a "%" to the Other Users' Namespace prefix
to discover the Personal Namespaces of other users that are available to the currently
authenticated user.

In response to such a LIST command, a server return user names that have not
granted access to their personal mailboxes to the user in question.

A server return a LIST response containing only the names of users that have explicitly
granted access to the user in question.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")("#mh/" "/" "X-PARAM"
 ("FLAG1" "FLAG2"))) NIL NIL
 S: A001 OK NAMESPACE command completed

 C: A002 LIST (SPECIAL-USE) "" "*"
 S: * LIST (\NonExistent \Archive) "/" Archives
 S: * LIST (\NonExistent \Drafts) "/" Drafts
 S: * LIST (\NonExistent \Junk) "/" Junk
 S: * LIST (\NonExistent \Sent) "/" "Sent Mail"
 S: * LIST (\NonExistent \Trash) "/" "Deleted Items"
 S: A002 OK LIST Completed

 C: A003 LIST (SPECIAL-USE) "#mh/" "*"
 S: * LIST (\NonExistent \Archive) "/" "#mh/Archives"
 S: * LIST (\NonExistent \Drafts) "/" "#mh/Drafts"
 S: * LIST (\NonExistent \Junk) "/" "#mh/Junk"
 S: * LIST (\NonExistent \Sent) "/" "#mh/Sent Mail"
 S: * LIST (\NonExistent \Trash) "/" "#mh/Deleted Items"
 S: A003 OK LIST Completed

 < It is desired to keep only one copy of sent mail.
 It is unclear which Personal Namespace the client
 should use to create the 'Sent Mail' mailbox.
 The user is prompted to select a namespace and only
 one 'Sent Mail' mailbox is created. >

 C: A004 CREATE "Sent Mail"
 S: A004 OK CREATE command completed

 < The client is designed so that it keeps two
 'Deleted Items' mailboxes, one for each namespace. >

 C: A005 CREATE "Delete Items"
 S: A005 OK CREATE command completed

 C: A006 CREATE "#mh/Deleted Items"
 S: A006 OK CREATE command completed

SHOULD

SHOULD NOT

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 61

Alternatively, a server return NO to such a LIST command, requiring that a user name be
included with the Other Users' Namespace prefix before listing any other user's mailboxes.

Example 7:

A server that supports providing a list of other user's mailboxes that are accessible to the
currently logged on user.

Example 8:

A server that does not support providing a list of other user's mailboxes that are accessible to the
currently logged on user. The mailboxes are listable if the client includes the name of the other
user with the Other Users' Namespace prefix.

A prefix string might not contain a hierarchy delimiter, because in some cases it is not needed as
part of the prefix.

Example 9:

MAY

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("Other Users/" "/")) NIL
 S: A001 OK NAMESPACE command completed

 C: A002 LIST "" "Other Users/%"
 S: * LIST () "/" "Other Users/Mike"
 S: * LIST () "/" "Other Users/Karen"
 S: * LIST () "/" "Other Users/Matthew"
 S: * LIST () "/" "Other Users/Tesa"
 S: A002 OK LIST command completed

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("#Users/" "/")) NIL
 S: A001 OK NAMESPACE command completed

 < In this example, the currently logged on user has access to
 the Personal Namespace of user Mike, but the server chose to
 suppress this information in the LIST response. However,
 by appending the user name Mike (received through user input)
 to the Other Users' Namespace prefix, the client is able
 to get a listing of the personal mailboxes of user Mike. >

 C: A002 LIST "" "#Users/%"
 S: A002 NO The requested item could not be found.

 C: A003 LIST "" "#Users/Mike/%"
 S: * LIST () "/" "#Users/Mike/INBOX"
 S: * LIST () "/" "#Users/Mike/Foo"
 S: A003 OK LIST command completed.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 62

Arguments:

Responses:

Result:

A server that allows access to the Other Users' Namespace by prefixing the others' mailboxes
with a '~' followed by <username>, where <username> is a user name as per the LOGIN or
AUTHENTICATE command.

6.3.11. STATUS Command

mailbox name

status data item names

 untagged responses: STATUS

OK - status completed

NO - status failure: no status for that name

BAD - command unknown or arguments invalid

The STATUS command requests the status of the indicated mailbox. It does not change the
currently selected mailbox, nor does it affect the state of any messages in the queried mailbox.

The STATUS command provides an alternative to opening a second IMAP4rev2 connection and
doing an EXAMINE command on a mailbox to query that mailbox's status without deselecting the
current mailbox in the first IMAP4rev2 connection.

Unlike the LIST command, the STATUS command is not guaranteed to be fast in its response.
Under certain circumstances, it can be quite slow. In some implementations, the server is obliged
to open the mailbox read-only internally to obtain certain status information. Also unlike the
LIST command, the STATUS command does not accept wildcards.

Note: The STATUS command is intended to access the status of mailboxes other than the
currently selected mailbox. Because the STATUS command can cause the mailbox to be
opened internally, and because this information is available by other means on the selected
mailbox, the STATUS command be used on the currently selected mailbox.
However, servers be able to execute STATUS command on the selected mailbox. (This
might also implicitly happen when STATUS return option is used in a LIST command).

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("~" "/")) NIL
 S: A001 OK NAMESPACE command completed

 < List the mailboxes for user mark >

 C: A002 LIST "" "~mark/%"
 S: * LIST () "/" "~mark/INBOX"
 S: * LIST () "/" "~mark/foo"
 S: A002 OK LIST command completed

REQUIRED

SHOULD NOT
MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 63

MESSAGES

UIDNEXT

UIDVALIDITY

UNSEEN

DELETED

SIZE

Arguments:

Responses:

Result:

The STATUS command be used as a "check for new messages in the selected
mailbox" operation (refer to Section 7 and Section 7.4.1 for more information about the
proper method for new message checking).

STATUS SIZE (see below) can take a significant amount of time, depending upon server
implementation. Clients should use STATUS SIZE cautiously.

The currently defined status data items that can be requested are:

The number of messages in the mailbox.

The next unique identifier value of the mailbox. Refer to Section 2.3.1.1 for more
information.

The unique identifier validity value of the mailbox. Refer to Section 2.3.1.1 for
more information.

The number of messages which do not have the \Seen flag set.

The number of messages which have the \Deleted flag set.

The total size of the mailbox in octets. This is not strictly required to be an exact value, but
it be equal to or greater than the sum of the values of the RFC822.SIZE FETCH message
data items (see Section 6.4.5) of all messages in the mailbox.

6.3.12. APPEND Command

mailbox name

 flag parenthesized list

 date/time string

message literal

 untagged response: LIST

OK - append completed

NO - append error: can't append to that mailbox, error

in flags or date/time or message text

BAD - command unknown or arguments invalid

MUST NOT

MUST

 Example: C: A042 STATUS blurdybloop (UIDNEXT MESSAGES)
 S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)
 S: A042 OK STATUS completed

OPTIONAL

OPTIONAL

OPTIONAL

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 64

The APPEND command appends the literal argument as a new message to the end of the
specified destination mailbox. This argument be in the format of an or

 message. 8-bit characters are permitted in the message. A server implementation that is
unable to preserve 8-bit data properly be able to reversibly convert 8-bit APPEND data to 7-
bit using a content transfer encoding.

Note: There may be exceptions, e.g., draft messages, in which required header
fields are omitted in the message literal argument to APPEND. The full implications of doing
so must be understood and carefully weighed.

If a flag parenthesized list is specified, the flags be set in the resulting message;
otherwise, the flag list of the resulting message is set to empty by default.

If a date-time is specified, the internal date be set in the resulting message; otherwise,
the internal date of the resulting message is set to the current date and time by default.

If the append is unsuccessful for any reason, the mailbox be restored to its state before the
APPEND attempt (other than possibly keeping the changed mailbox's UIDNEXT value); no partial
appending is permitted.

If the destination mailbox does not exist, a server return an error, and
automatically create the mailbox. Unless it is certain that the destination mailbox can not be
created, the server send the response code "[TRYCREATE]" as the prefix of the text of the
tagged NO response. This gives a hint to the client that it can attempt a CREATE command and
retry the APPEND if the CREATE is successful.

On successful completion of an APPEND, the server returns an APPENDUID response code (see
Section 7.1), unless specified otherwise below.

In the case of a mailbox that has permissions set so that the client can APPEND to the mailbox,
but not SELECT or EXAMINE it, the server send an APPENDUID response code as it
would disclose information about the mailbox.

In the case of a mailbox that has UIDNOTSTICKY status (see Section 7.1), the server omit the
APPENDUID response code as it is not meaningful.

If the mailbox is currently selected, the normal new message actions occur. Specifically,
the server notify the client immediately via an untagged EXISTS response. If the server
does not do so, the client issue a NOOP command after one or more APPEND commands.

SHOULD [RFC-5322] [I18N-
HDRS]

MUST
[MIME-IMB]

[RFC-5322]

SHOULD

SHOULD

MUST

MUST MUST NOT

MUST

MUST NOT

MAY

SHOULD
SHOULD

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 65

If the server decides to convert (normalize) the mailbox name, it return an untagged
LIST with OLDNAME extended data item, with the OLDNAME value being the supplied mailbox
name and the name parameter being the normalized mailbox name. (See Section 6.3.9.7 for more
details.)

In this example, A003 and A004 demonstrate successful appending and copying to a mailbox that
returns the UIDs assigned to the messages. A005 is an example in which no messages were
copied; this is because in A003, we see that message 2 had UID 304, and message 3 had UID 319;

SHOULD

 Example: C: A003 APPEND saved-messages (\Seen) {326}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.example>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu.example
 C: Message-Id: <B27397-0100000@Blurdybloop.example>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND completed

 Example: C: A003 APPEND saved-messages (\Seen) {297+}
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@example.com>
 C: Subject: afternoon meeting
 C: To: mooch@example.com
 C: Message-Id: <B27397-0100000@example.com>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK [APPENDUID 38505 3955] APPEND completed
 C: A004 COPY 2:4 meeting
 S: A004 OK [COPYUID 38505 304,319:320 3956:3958] Done
 C: A005 UID COPY 305:310 meeting
 S: A005 OK No matching messages, so nothing copied
 C: A006 COPY 2 funny
 S: A006 OK Done
 C: A007 SELECT funny
 S: * 1 EXISTS
 S: * OK [UIDVALIDITY 3857529045] Validity session-only
 S: * OK [UIDNEXT 2] Predicted next UID
 S: * NO [UIDNOTSTICKY] Non-persistent UIDs
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen)] Limited
 S: * LIST () "." funny
 S: A007 OK [READ-WRITE] SELECT completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 66

therefore, UIDs 305 through 310 do not exist (refer to Section 2.3.1.1 for further explanation).
A006 is an example of a message being copied that did not return a COPYUID; and, as expected,
A007 shows that the mail store containing that mailbox does not support persistent UIDs.

Note: The APPEND command is not used for message delivery, because it does not provide a
mechanism to transfer envelope information. [SMTP]

Arguments:

Responses:

Result:

6.3.13. IDLE Command

none

continuation data will be requested; the client sends the continuation data "DONE"
to end the command

OK - IDLE completed after client sent "DONE"

NO - failure: the server will not allow the IDLE command at this time

BAD - command unknown or arguments invalid

Without the IDLE command a client would need to poll the server for changes to the selected
mailbox (new mail, deletions, flag changes). It's often more desirable to have the server transmit
updates to the client in real time. This allows a user to see new mail immediately. The IDLE
command allows a client to tell the server that it's ready to accept such real-time updates.

The IDLE command is sent from the client to the server when the client is ready to accept
unsolicited update messages. The server requests a response to the IDLE command using the
continuation ("+") response. The IDLE command remains active until the client responds to the
continuation, and as long as an IDLE command is active, the server is now free to send untagged
EXISTS, EXPUNGE, FETCH, and other responses at any time. If the server chooses to send
unsolicited FETCH responses, they include UID FETCH item.

The IDLE command is terminated by the receipt of a "DONE" continuation from the client; such
response satisfies the server's continuation request. At that point, the server send any
remaining queued untagged responses and then immediately send the tagged response to
the IDLE command and prepare to process other commands. As for other commands, the
processing of any new command may cause the sending of unsolicited untagged responses,
subject to the ambiguity limitations. The client send a command while the server is
waiting for the DONE, since the server will not be able to distinguish a command from a
continuation.

MUST

MAY
MUST

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 67

Arguments:

6.4. Client Commands - Selected State
In the selected state, commands that manipulate messages in a mailbox are permitted.

In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT), and the authenticated
state commands (SELECT, EXAMINE, NAMESPACE, CREATE, DELETE, RENAME, SUBSCRIBE,
UNSUBSCRIBE, LIST, STATUS, and APPEND), the following commands are valid in the selected
state: CLOSE, UNSELECT, EXPUNGE, SEARCH, FETCH, STORE, COPY, MOVE, and UID.

6.4.1. CLOSE Command

none

The server consider a client inactive if it has an IDLE command running, and if such a
server has an inactivity timeout it log the client off implicitly at the end of its timeout
period. Because of that, clients using IDLE are advised to terminate the IDLE and re-issue it at
least every 29 minutes to avoid being logged off. This still allows a client to receive immediate
mailbox updates even though it need only "poll" at half hour intervals.

MAY
MAY

 Example: C: A001 SELECT INBOX
 S: * FLAGS (\Deleted \Seen \Flagged)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen \Flagged)] Limited
 S: * 3 EXISTS
 S: * OK [UIDVALIDITY 1]
 S: * OK [UIDNEXT 1]
 S: * LIST () "/" INBOX
 S: A001 OK [READ-WRITE] SELECT completed
 C: A002 IDLE
 S: + idling
 ...time passes; new mail arrives...
 S: * 4 EXISTS
 C: DONE
 S: A002 OK IDLE terminated
 ...another client expunges message 2 now...
 C: A003 FETCH 4 ALL
 S: * 4 FETCH (...)
 S: A003 OK FETCH completed
 C: A004 IDLE
 S: * 2 EXPUNGE
 S: * 3 EXISTS
 S: + idling
 ...time passes; another client expunges message 3...
 S: * 3 EXPUNGE
 S: * 2 EXISTS
 ...time passes; new mail arrives...
 S: * 3 EXISTS
 C: DONE
 S: A004 OK IDLE terminated
 C: A005 FETCH 3 ALL
 S: * 3 FETCH (...)
 S: A005 OK FETCH completed
 C: A006 IDLE

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 68

Responses:

Result:

Arguments:

Responses:

Result:

Arguments:

Responses:

Result:

no specific responses for this command

OK - close completed, now in authenticated state

BAD - command unknown or arguments invalid

The CLOSE command permanently removes all messages that have the \Deleted flag set from the
currently selected mailbox, and returns to the authenticated state from the selected state. No
untagged EXPUNGE responses are sent.

No messages are removed, and no error is given, if the mailbox is selected by an EXAMINE
command or is otherwise selected read-only.

Even if a mailbox is selected, a SELECT, EXAMINE, or LOGOUT command be issued without
previously issuing a CLOSE command. The SELECT, EXAMINE, and LOGOUT commands implicitly
close the currently selected mailbox without doing an expunge. However, when many messages
are deleted, a CLOSE-LOGOUT or CLOSE-SELECT sequence is considerably faster than an
EXPUNGE-LOGOUT or EXPUNGE-SELECT because no untagged EXPUNGE responses (which the
client would probably ignore) are sent.

6.4.2. UNSELECT Command

none

no specific responses for this command

OK - unselect completed, now in authenticated state

BAD - no mailbox selected, or argument supplied but none permitted

The UNSELECT command frees session's resources associated with the selected mailbox and
returns the server to the authenticated state. This command performs the same actions as
CLOSE, except that no messages are permanently removed from the currently selected mailbox.

6.4.3. EXPUNGE Command

none

untagged responses: EXPUNGE

OK - expunge completed

NO - expunge failure: can't expunge (e.g., permission

MAY

 Example: C: A341 CLOSE
 S: A341 OK CLOSE completed

 Example: C: A342 UNSELECT
 S: A342 OK Unselect completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 69

Arguments:

Responses:

Result:

denied)

BAD - command unknown or arguments invalid

The EXPUNGE command permanently removes all messages that have the \Deleted flag set from
the currently selected mailbox. Before returning an OK to the client, an untagged EXPUNGE
response is sent for each message that is removed.

Note: In this example, messages 3, 4, 7, and 11 had the \Deleted flag set. See the description of the
EXPUNGE response (Section 7.5.1) for further explanation.

6.4.4. SEARCH Command

 result specifier

 specification

searching criteria (one or more)

 untagged response: ESEARCH

OK - search completed

NO - search error: can't search that or

criteria

BAD - command unknown or arguments invalid

The SEARCH command searches the mailbox for messages that match the given searching
criteria.

The SEARCH command may contain result options. Result options control what kind of
information is returned about messages matching the search criteria in an untagged ESEARCH
response. If no result option is specified or empty list of options is specified "()", ALL is assumed
(see below). The order of individual options is arbitrary. Individual options may contain
parameters enclosed in parentheses. (However, if an option has a mandatory parameter, which
can always be represented as a number or a sequence-set, the option parameter does not need
the enclosing parentheses. See the Formal Syntax (Section 9) for more details). If an option has
parameters, they consist of atoms and/or strings and/or lists in a specific order. Any options not
defined by extensions that the server supports be rejected with a BAD response.

 Example: C: A202 EXPUNGE
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: * 5 EXPUNGE
 S: * 8 EXPUNGE
 S: A202 OK EXPUNGE completed

OPTIONAL

OPTIONAL [CHARSET]

OPTIONAL

[CHARSET]

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 70

MIN

MAX

ALL

COUNT

SAVE

Note that IMAP4rev1 used SEARCH responses instead of ESEARCH responses.
IMAP4rev2-only clients ignore SEARCH responses.

This document specifies the following result options:

Return the lowest message number/UID that satisfies the SEARCH criteria.

If the SEARCH results in no matches, the server include the MIN result option in
the ESEARCH response; however, it still send the ESEARCH response.

Return the highest message number/UID that satisfies the SEARCH criteria.

If the SEARCH results in no matches, the server include the MAX result option in
the ESEARCH response; however, it still send the ESEARCH response.

Return all message numbers/UIDs that satisfy the SEARCH criteria using the sequence-set
syntax. Note, the client assume that messages/UIDs will be listed in any
particular order.

If the SEARCH results in no matches, the server include the ALL result option in
the ESEARCH response; however, it still send the ESEARCH response.

Return the number of messages that satisfy the SEARCH criteria. This result option
 always be included in the ESEARCH response.

This option tells the server to remember the result of the SEARCH or UID SEARCH
command (as well as any command based on SEARCH, e.g., SORT and THREAD >)
and store it in an internal variable that we will reference as the "search result variable".
The client can use the "$" marker to reference the content of this internal variable. The "$"
marker can be used instead of message sequence or UID sequence in order to indicate that
the server should substitute it with the list of messages from the search result variable.
Thus, the client can use the result of the latest remembered SEARCH command as a
parameter to another command. See Section 6.4.4.1 for details on how the value of the
search result variable is determined, how it is affected by other commands executed, and
how SAVE return option interacts with other return options.

In absence of any other SEARCH result option, the SAVE result option also suppresses any
ESEARCH response that would have been otherwise returned by the SEARCH command.

Note: future extensions to this document can allow servers to return multiple ESEARCH
responses for a single extended SEARCH command. However all options specified above
result in a single ESEARCH response if used by themselves or in combination. This guarantee
simplifies processing in IMAP4rev2 clients. Future SEARCH extensions that relax this restriction
will have to describe how results from multiple ESEARCH responses are to be combined.

Searching criteria consist of one or more search keys.

[RFC3501]
MUST

MUST NOT
MUST

MUST NOT
MUST

MUST NOT

MUST NOT
MUST

MUST

[RFC5256]

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 71

<sequence set>

ALL

ANSWERED

BCC <string>

BEFORE <date>

BODY <string>

CC <string>

When multiple keys are specified, the result is the intersection (AND function) of all the messages
that match those keys. For example, the criteria DELETED FROM "SMITH" SINCE 1-Feb-1994
refers to all deleted messages from Smith with INTERNALDATE greater than February 1, 1994. A
search key can also be a parenthesized list of one or more search keys (e.g., for use with the OR
and NOT keys).

Server implementations exclude body parts with terminal content media types
other than TEXT and MESSAGE from consideration in SEARCH matching.

The specification consists of the word "CHARSET" followed by a registered
 . It indicates the of the strings that appear in the search

criteria. content transfer encodings, and strings in /
 headers, be decoded before comparing text. Servers support US-ASCII and

UTF-8 charsets; other s be supported. Clients use UTF-8. Note that if
"CHARSET" is not provided IMAP4rev2 servers assume UTF-8, so selecting CHARSET UTF-8
is redundant. It is permitted for improved compatibility with existing IMAP4rev1 clients.

If the server does not support the specified , it return a tagged NO response (not
a BAD). This response contain the BADCHARSET response code, which list the

s supported by the server.

In all search keys that use strings and unless specified otherwise, a message matches the key if
the string is a substring of the associated text. The matching be case-insensitive for
characters within ASCII range. Consider using for language-sensitive case-
insensitive searching. Note that the empty string is a substring; this is useful when doing a
HEADER search in order to test for a header field presence in the message.

The defined search keys are as follows. Refer to the Formal Syntax section for the precise
syntactic definitions of the arguments.

Messages with message sequence numbers corresponding to the specified
message sequence number set.

All messages in the mailbox; the default initial key for ANDing.

Messages with the \Answered flag set.

Messages that contain the specified string in the envelope structure's BCC field.

Messages whose internal date (disregarding time and timezone) is earlier than
the specified date.

Messages that contain the specified string in the body of the message. Unlike
TEXT (see below), this doesn't match any header fields. Servers are allowed to implement
flexible matching for this search key, for example matching "swim" to both "swam" and
"swum" in English language text or only doing full word matching (where "swim" will not
match "swimming").

Messages that contain the specified string in the envelope structure's CC field.

MAY [MIME-IMB]

OPTIONAL [CHARSET]
[CHARSET] [CHARSET-REG] [CHARSET]

[MIME-IMB] [MIME-HDRS] [RFC-5322] [MIME-
IMB] MUST MUST

[CHARSET] MAY SHOULD
MUST

[CHARSET] MUST
SHOULD MAY

[CHARSET]

SHOULD
[IMAP-I18N]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 72

DELETED

DRAFT

FLAGGED

FROM <string>

HEADER <field-name> <string>

KEYWORD <flag>

LARGER <n>

NOT <search-key>

ON <date>

OR <search-key1> <search-key2>

SEEN

SENTBEFORE <date>

SENTON <date>

SENTSINCE <date>

SINCE <date>

SMALLER <n>

SUBJECT <string>

TEXT <string>

Messages with the \Deleted flag set.

Messages with the \Draft flag set.

Messages with the \Flagged flag set.

Messages that contain the specified string in the envelope structure's FROM
field.

Messages that have a header field with the specified field-name
(as defined in) and that contains the specified string in the text of the header field
(what comes after the colon). If the string to search is zero-length, this matches all messages
that have a header field with the specified field-name regardless of the contents. Servers
should use substring search for this SEARCH item, as clients can use it for automatic
processing not initiated by end users. For example this can be used for searching for Message-
ID or Content-Type header field values that need to be exact, or for searches in header fields
that the IMAP server might not know anything about.

Messages with the specified keyword flag set.

Messages with an size larger than the specified number of octets.

Messages that do not match the specified search key.

Messages whose internal date (disregarding time and timezone) is within the
specified date.

Messages that match either search key.

Messages that have the \Seen flag set.

Messages whose Date: header field (disregarding time and
timezone) is earlier than the specified date.

Messages whose Date: header field (disregarding time and
timezone) is within the specified date.

Messages whose Date: header field (disregarding time and
timezone) is within or later than the specified date.

Messages whose internal date (disregarding time and timezone) is within or later
than the specified date.

Messages with an size smaller than the specified number of octets.

Messages that contain the specified string in the envelope structure's
SUBJECT field.

Messages that contain the specified string in the header (including MIME header
fields) or body of the message. Servers are allowed to implement flexible matching for this
search key, for example matching "swim" to both "swam" and "swum" in English language text
or only doing full word matching (where "swim" will not match "swimming").

[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 73

TO <string>

UID <sequence set>

UNANSWERED

UNDELETED

UNDRAFT

UNFLAGGED

UNKEYWORD <flag>

UNSEEN

Messages that contain the specified string in the envelope structure's TO field.

Messages with unique identifiers corresponding to the specified unique
identifier set. Sequence set ranges are permitted.

Messages that do not have the \Answered flag set.

Messages that do not have the \Deleted flag set.

Messages that do not have the \Draft flag set.

Messages that do not have the \Flagged flag set.

Messages that do not have the specified keyword flag set.

Messages that do not have the \Seen flag set.

Note: Since this document is restricted to 7-bit ASCII text, it is not possible to show actual UTF-8
data. The "XXXXXX" is a placeholder for what would be 6 octets of 8-bit data in an actual
transaction.

The following example demonstrates finding the first unseen message in the mailbox:

 Example: C: A282 SEARCH RETURN (MIN COUNT) FLAGGED
 SINCE 1-Feb-1994 NOT FROM "Smith"
 S: * ESEARCH (TAG "A282") MIN 2 COUNT 3
 S: A282 OK SEARCH completed

 Example: C: A283 SEARCH RETURN () FLAGGED
 SINCE 1-Feb-1994 NOT FROM "Smith"
 S: * ESEARCH (TAG "A283") ALL 2,10:11
 S: A283 OK SEARCH completed

 Example: C: A284 SEARCH TEXT "string not in mailbox"
 S: * ESEARCH (TAG "A284")
 S: A284 OK SEARCH completed
 C: A285 SEARCH CHARSET UTF-8 TEXT {6}
 S: + Ready for literal text
 C: XXXXXX
 S: * ESEARCH (TAG "A285") ALL 43
 S: A285 OK SEARCH completed

 Example: C: A284 SEARCH RETURN (MIN) UNSEEN
 S: * ESEARCH (TAG "A284") MIN 4
 S: A284 OK SEARCH completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 74

The following example demonstrates that if the ESEARCH UID indicator is present, all data in the
ESEARCH response is referring to UIDs; for example, the MIN result specifier will be followed by
a UID.

The following example demonstrates returning the number of deleted messages:

 Example: C: A285 UID SEARCH RETURN (MIN MAX) 1:5000
 S: * ESEARCH (TAG "A285") UID MIN 7 MAX 3800
 S: A285 OK SEARCH completed

 Example: C: A286 SEARCH RETURN (COUNT) DELETED
 S: * ESEARCH (TAG "A286") COUNT 15
 S: A286 OK SEARCH completed

6.4.4.1. SAVE result option and SEARCH result variable
Upon successful completion of a SELECT or an EXAMINE command (after the tagged OK
response), the current search result variable is reset to the empty sequence.

A successful SEARCH command with the SAVE result option sets the value of the search result
variable to the list of messages found in the SEARCH command. For example, if no messages
were found, the search result variable will contain the empty sequence.

Any of the following SEARCH commands change the search result variable:

a SEARCH command that caused the server to return the BAD tagged response,

a SEARCH command with no SAVE result option that caused the server to return NO tagged
response,

a successful SEARCH command with no SAVE result option.

A SEARCH command with the SAVE result option that caused the server to return the NO tagged
response sets the value of the search result variable to the empty sequence.

When a message listed in the search result variable is EXPUNGEd, it is automatically removed
from the list. Implementors are reminded that if the server stores the list as a list of message
numbers, it automatically adjust them when notifying the client about expunged messages,
as described in Section 7.5.1.

If the server decides to send a new UIDVALIDITY value while the mailbox is opened, this causes
resetting of the search variable to the empty sequence.

Note that even if the "$" marker contains the empty sequence of messages, it must be treated by
all commands accepting message sets as parameters as a valid, but non-matching list of
messages. For example, the "FETCH $" command would return a tagged OK response and no
FETCH responses. See also the Example 5 in Section 6.4.4.4.

The SAVE result option doesn't change whether the server would return items corresponding to
MIN, MAX, ALL, or COUNT result options.

MUST NOT

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 75

When the SAVE result option is combined with the MIN or MAX result option, and both ALL and
COUNT result options are absent, the corresponding MIN/MAX is returned (if the search result is
not empty), but the "$" marker would contain a single message as returned in the MIN/MAX
return item.

If the SAVE result option is combined with both MIN and MAX result options, and both ALL and
COUNT result options are absent, the "$" marker would contain zero, one or two messages as
returned in the MIN/MAX return items.

If the SAVE result option is combined with the ALL and/or COUNT result option(s), the "$" marker
would always contain all messages found by the SEARCH or UID SEARCH command.

The following table summarizes the additional requirement on ESEARCH server
implementations described in this section.

Combination of Result option "$" marker value

SAVE MIN MIN

SAVE MAX MAX

SAVE MIN MAX MIN & MAX

SAVE * [m] all found messages

Table 3

where '*' means "ALL" and/or "COUNT", and '[m]' means optional "MIN" and/or "MAX"

Implementation note: server implementors should note that "$" can reference IMAP message
sequences or UID sequences, depending on the context where it is used. For example, the "$"
marker can be set as a result of a SEARCH (SAVE) command and used as a parameter to a UID
FETCH command (which accepts a UID sequence, not a message sequence), or the "$" marker can
be set as a result of a UID SEARCH (SAVE) command and used as a parameter to a FETCH
command (which accepts a message sequence, not a UID sequence). Server implementations
need to automatically map the "$" marker value to message numbers or UIDs, depending on
context where the "$" marker is used.

6.4.4.2. Multiple Commands in Progress
Use of a SEARCH RETURN (SAVE) command followed by a command using the "$" marker creates
direct dependency between the two commands. As directed by Section 5.5, a server execute
the two commands in the order they were received.

A client pipeline a SEARCH RETURN (SAVE) command with one or more command using the
"$" marker, as long as this doesn't create an ambiguity, as described in Section 5.5. Examples 7-9
in Section 6.4.4.4 explain this in more details.

MUST

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 76

6.4.4.3. Refusing to Save Search Results
In some cases, the server refuse to save a SEARCH (SAVE) result, for example, if an internal
limit on the number of saved results is reached. In this case, the server return a tagged NO
response containing the NOTSAVED response code and set the search result variable to the empty
sequence, as described in Section 6.4.4.1.

MAY
MUST

6.4.4.4. Examples showing use of SAVE result option
Only in this section: explanatory comments in examples that start with // are not part of the
protocol.

1) The following example demonstrates how the client can use the result of a SEARCH command
to FETCH headers of interesting messages:

The client can also pipeline the two commands:

2) The following example demonstrates that the result of one SEARCH command can be used as
input to another SEARCH command:

Note that the second command in Example 3 can be replaced with: C: A301 UID SEARCH $
SMALLER 4096 and the result of the command would be the same.

 Example 1:
 C: A282 SEARCH RETURN (SAVE) FLAGGED SINCE 1-Feb-1994
 NOT FROM "Smith"
 S: A282 OK SEARCH completed, result saved
 C: A283 FETCH $ (UID INTERNALDATE FLAGS BODY.PEEK[HEADER])
 S: * 2 FETCH (UID 14 ...
 S: * 84 FETCH (UID 100 ...
 S: * 882 FETCH (UID 1115 ...
 S: A283 OK completed

 Example 2:
 C: A282 SEARCH RETURN (SAVE) FLAGGED SINCE 1-Feb-1994
 NOT FROM "Smith"
 C: A283 FETCH $ (UID INTERNALDATE FLAGS BODY.PEEK[HEADER])
 S: A282 OK SEARCH completed
 S: * 2 FETCH (UID 14 ...
 S: * 84 FETCH (UID 100 ...
 S: * 882 FETCH (UID 1115 ...
 S: A283 OK completed

 Example 3:
 C: A300 SEARCH RETURN (SAVE) SINCE 1-Jan-2004
 NOT FROM "Smith"
 S: A300 OK SEARCH completed
 C: A301 UID SEARCH UID $ SMALLER 4096
 S: * ESEARCH (TAG "A301") UID ALL 17,900,901
 S: A301 OK completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 77

3) The following example shows that the "$" marker can be combined with other message
numbers using the OR SEARCH criterion.

Note: Since this document format is restricted to 7-bit ASCII text, it is not possible to show actual
UTF-8 data. The "YYYYYYYY" is a placeholder for what would be 8 octets of 8-bit data in an actual
transaction.

4) The following example demonstrates that a failed SEARCH sets the search result variable to
the empty list. The server doesn't implement the KOI8-R charset.

Note: Since this document format is restricted to 7-bit ASCII text, it is not possible to show actual
KOI8-R data. The "XXXX" is a placeholder for what would be 4 octets of 8-bit data in an actual
transaction.

 Example 4:
 C: P282 SEARCH RETURN (SAVE) SINCE 1-Feb-1994
 NOT FROM "Smith"
 S: P282 OK SEARCH completed
 C: P283 SEARCH CHARSET UTF-8 (OR $ 1,3000:3021) TEXT {8+}
 C: YYYYYYYY
 S: * ESEARCH (TAG "P283") ALL 882,1102,3003,3005:3006
 S: P283 OK completed

 Example 5:
 C: B282 SEARCH RETURN (SAVE) SINCE 1-Feb-1994
 NOT FROM "Smith"
 S: B282 OK SEARCH completed
 C: B283 SEARCH RETURN (SAVE) CHARSET KOI8-R
 (OR $ 1,3000:3021) TEXT {4}
 C: XXXX
 S: B283 NO [BADCHARSET UTF-8] KOI8-R is not supported
 //After this command the saved result variable contains
 //no messages. A client that wants to reissue the B283
 //SEARCH command with another CHARSET would have to reissue
 //the B282 command as well. One possible workaround for
 //this is to include the desired CHARSET parameter
 //in the earliest SEARCH RETURN (SAVE) command in a
 //sequence of related SEARCH commands, to cause
 //the earliest SEARCH in the sequence to fail.
 //A better approach might be to always use CHARSET UTF-8
 //instead.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 78

5) The following example demonstrates that it is not an error to use the "$" marker when it
contains no messages.

The following example demonstrates that the result of the second SEARCH RETURN (SAVE)
always overrides the result of the first.

 Example 6:
 C: E282 SEARCH RETURN (SAVE) SINCE 28-Oct-2006
 NOT FROM "Eric"
 C: E283 COPY $ "Other Messages"
 //The "$" contains no messages
 S: E282 OK SEARCH completed
 S: E283 OK COPY completed, nothing copied

 Example 7:
 C: F282 SEARCH RETURN (SAVE) KEYWORD $Junk
 C: F283 COPY $ "Junk"
 C: F284 STORE $ +FLAGS.Silent (\Deleted)
 S: F282 OK SEARCH completed
 S: F283 OK COPY completed
 S: F284 OK STORE completed

 Example 8:
 C: G282 SEARCH RETURN (SAVE) KEYWORD $Junk
 C: G283 SEARCH RETURN (ALL) SINCE 28-Oct-2006
 FROM "Eric"
 // The server can execute the two SEARCH commands
 // in any order, as they don't have any dependency.
 // For example, it may return:
 S: * ESEARCH (TAG "G283") ALL 3:15,27,29:103
 S: G283 OK SEARCH completed
 S: G282 OK SEARCH completed

 Example 9:
 C: H282 SEARCH RETURN (SAVE) KEYWORD $Junk
 C: H283 SEARCH RETURN (SAVE) SINCE 28-Oct-2006
 FROM "Eric"
 S: H282 OK SEARCH completed
 S: H283 OK SEARCH completed
 // At this point "$" would contain results of H283

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 79

The following example demonstrates behavioral difference for different combinations of
ESEARCH result options.

 Example 10:
 C: C282 SEARCH RETURN (ALL) SINCE 12-Feb-2006
 NOT FROM "Smith"
 S: * ESEARCH (TAG "C283") ALL 2,10:15,21
 //$ value hasn't changed
 S: C282 OK SEARCH completed

 C: C283 SEARCH RETURN (ALL SAVE) SINCE 12-Feb-2006
 NOT FROM "Smith"
 S: * ESEARCH (TAG "C283") ALL 2,10:15,21
 //$ value is 2,10:15,21
 S: C283 OK SEARCH completed

 C: C284 SEARCH RETURN (SAVE MIN) SINCE 12-Feb-2006
 NOT FROM "Smith"
 S: * ESEARCH (TAG "C284") MIN 2
 //$ value is 2
 S: C284 OK SEARCH completed

 C: C285 SEARCH RETURN (MAX SAVE MIN) SINCE
 12-Feb-2006 NOT FROM "Smith"
 S: * ESEARCH (TAG "C285") MIN 2 MAX 21
 //$ value is 2,21
 S: C285 OK SEARCH completed

 C: C286 SEARCH RETURN (MAX SAVE MIN COUNT)
 SINCE 12-Feb-2006 NOT FROM "Smith"
 S: * ESEARCH (TAG "C286") MIN 2 MAX 21 COUNT 8
 //$ value is 2,10:15,21
 S: C286 OK SEARCH completed

 C: C286 SEARCH RETURN (ALL SAVE MIN) SINCE
 12-Feb-2006 NOT FROM "Smith"
 S: * ESEARCH (TAG "C286") MIN 2 ALL 2,10:15,21
 //$ value is 2,10:15,21
 S: C286 OK SEARCH completed

Arguments:

Responses:

Result:

6.4.5. FETCH Command

sequence set

message data item names or macro

untagged responses: FETCH

OK - fetch completed

NO - fetch error: can't fetch that data

BAD - command unknown or arguments invalid

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 80

ALL

FAST

FULL

BINARY[<section-binary>]<<partial>>

BINARY.PEEK[<section-binary>]<<partial>>

BINARY.SIZE[<section-binary>]

The FETCH command retrieves data associated with a message in the mailbox. The data items to
be fetched can be either a single atom or a parenthesized list.

Most data items, identified in the formal syntax (Section 9) under the msg-att-static rule, are
static and change for any particular message. Other data items, identified in the
formal syntax under the msg-att-dynamic rule, change, either as a result of a STORE
command or due to external events.

For example, if a client receives an ENVELOPE for a message when it already knows the
envelope, it can safely ignore the newly transmitted envelope.

There are three macros which specify commonly-used sets of data items, and can be used instead
of data items. A macro must be used by itself, and not in conjunction with other macros or data
items.

Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE)

Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE)

Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE BODY)

Several data items reference "section" or "section-binary". See Section 6.4.5.1 for their detailed
definition.

The currently defined data items that can be fetched are:

Requests that the specified section be transmitted after
performing Content-Transfer-Encoding-related decoding.

The <partial> argument, if present, requests that a subset of the data be returned. The
semantics of a partial FETCH BINARY command are the same as for a partial FETCH BODY
command, with the exception that the <partial> arguments refer to the DECODED section
data.

Note that this data item can only be requested for leaf (i.e. non multipart/*, non message/
rfc822 and non message/global) body parts.

An alternate form of BINARY[<section-binary>] that
does not implicitly set the \Seen flag.

Requests the decoded size of the section (i.e., the size to expect
in response to the corresponding FETCH BINARY request).

Note: client authors are cautioned that this might be an expensive operation for some
server implementations. Needlessly issuing this request could result in degraded
performance due to servers having to calculate the value every time the request is issued.

MUST NOT
MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 81

BODY

BODY[<section>]<<partial>>

BODY.PEEK[<section>]<<partial>>

BODYSTRUCTURE

ENVELOPE

FLAGS

INTERNALDATE

RFC822.SIZE

UID

Note that this data item can only be requested for leaf (i.e. non multipart/*, non message/
rfc822 and non message/global) body parts.

Non-extensible form of BODYSTRUCTURE.

The text of a particular body section.

It is possible to fetch a substring of the designated text. This is done by appending an open
angle bracket ("<"), the octet position of the first desired octet, a period, the maximum
number of octets desired, and a close angle bracket (">") to the part specifier. If the starting
octet is beyond the end of the text, an empty string is returned.

Any partial fetch that attempts to read beyond the end of the text is truncated as
appropriate. A partial fetch that starts at octet 0 is returned as a partial fetch, even if this
truncation happened.

Note: This means that BODY[]<0.2048> of a 1500-octet message will return BODY[]<0>
with a literal of size 1500, not BODY[].

Note: A substring fetch of a HEADER.FIELDS or HEADER.FIELDS.NOT part specifier is
calculated after subsetting the header.

The \Seen flag is implicitly set; if this causes the flags to change, they be included
as part of the FETCH responses.

An alternate form of BODY[<section>] that does not implicitly
set the \Seen flag.

The body structure of the message. This is computed by the
server by parsing the header fields in the header and
headers. See Section 7.5.2 for more details.

The envelope structure of the message. This is computed by the server by parsing
the header into the component parts, defaulting various fields as necessary. See
Section 7.5.2 for more details.

The flags that are set for this message.

The internal date of the message.

The size of the message.

The unique identifier for the message.

SHOULD

[MIME-IMB]
[MIME-IMB] [RFC-5322] [MIME-IMB]

[RFC-5322]

[RFC-5322]

 Example: C: A654 FETCH 2:4 (FLAGS BODY[HEADER.FIELDS (DATE FROM)])
 S: * 2 FETCH
 S: * 3 FETCH
 S: * 4 FETCH
 S: A654 OK FETCH completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 82

6.4.5.1. FETCH section specification
Several FETCH data items reference "section" or "section-binary". The section specification is a
set of zero or more part specifiers delimited by periods. A part specifier is either a part number
or one of the following: HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, MIME, and TEXT. (Non
numeric part specifiers have to be the last specifier in a section specification.) An empty section
specification refers to the entire message, including the header.

Every message has at least one part number. Non- messages, and non-multipart
 messages with no encapsulated message, only have a part 1.

Multipart messages are assigned consecutive part numbers, as they occur in the message. If a
particular part is of type message or multipart, its parts be indicated by a period followed
by the part number within that nested multipart part.

A part of type MESSAGE/RFC822 or MESSAGE/GLOBAL also has nested part numbers, referring to
parts of the MESSAGE part's body.

The HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, and TEXT part specifiers can be the sole
part specifier or can be prefixed by one or more numeric part specifiers, provided that the
numeric part specifier refers to a part of type MESSAGE/RFC822 or MESSAGE/GLOBAL. The MIME
part specifier be prefixed by one or more numeric part specifiers.

The HEADER, HEADER.FIELDS, and HEADER.FIELDS.NOT part specifiers refer to the
header of the message or of an encapsulated MESSAGE/RFC822 or MESSAGE/
GLOBAL message. HEADER.FIELDS and HEADER.FIELDS.NOT are followed by a list of field-name
(as defined in) names, and return a subset of the header. The subset returned by
HEADER.FIELDS contains only those header fields with a field-name that matches one of the
names in the list; similarly, the subset returned by HEADER.FIELDS.NOT contains only the header
fields with a non-matching field-name. The field-matching is ASCII range case-insensitive but
otherwise exact. Subsetting does not exclude the delimiting blank line between the
header and the body; the blank line is included in all header fetches, except in the case of a
message which has no body and no blank line.

The MIME part specifier refers to the header for this part.

[MIME-IMB]
[MIME-IMB]

MUST

MUST

[RFC-5322]
[MIME-IMT]

[RFC-5322]

[RFC-5322]

[MIME-IMB]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 83

Arguments:

Responses:

Result:

FLAGS <flag list>

6.4.6. STORE Command

sequence set

message data item name

value for message data item

untagged responses: FETCH

OK - store completed

NO - store error: can't store that data

BAD - command unknown or arguments invalid

The STORE command alters data associated with a message in the mailbox. Normally, STORE will
return the updated value of the data with an untagged FETCH response. A suffix of ".SILENT" in
the data item name prevents the untagged FETCH, and the server assume that the client
has determined the updated value itself or does not care about the updated value.

Note: Regardless of whether or not the ".SILENT" suffix was used, the server send an
untagged FETCH response if a change to a message's flags from an external source is
observed. The intent is that the status of the flags is determinate without a race condition.

The currently defined data items that can be stored are:

The TEXT part specifier refers to the text body of the message, omitting the header.

Here is an example of a complex message with some of its part specifiers:

[RFC-5322]

 HEADER ([RFC-5322] header of the message)
 TEXT ([RFC-5322] text body of the message) MULTIPART/MIXED
 1 TEXT/PLAIN
 2 APPLICATION/OCTET-STREAM
 3 MESSAGE/RFC822
 3.HEADER ([RFC-5322] header of the message)
 3.TEXT ([RFC-5322] text body of the message) MULTIPART/MIXED
 3.1 TEXT/PLAIN
 3.2 APPLICATION/OCTET-STREAM
 4 MULTIPART/MIXED
 4.1 IMAGE/GIF
 4.1.MIME ([MIME-IMB] header for the IMAGE/GIF)
 4.2 MESSAGE/RFC822
 4.2.HEADER ([RFC-5322] header of the message)
 4.2.TEXT ([RFC-5322] text body of the message) MULTIPART/MIXED
 4.2.1 TEXT/PLAIN
 4.2.2 MULTIPART/ALTERNATIVE
 4.2.2.1 TEXT/PLAIN
 4.2.2.2 TEXT/RICHTEXT

SHOULD

SHOULD

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 84

FLAGS.SILENT <flag list>

+FLAGS <flag list>

+FLAGS.SILENT <flag list>

-FLAGS <flag list>

-FLAGS.SILENT <flag list>

Replace the flags for the message with the argument. The new value of the flags is returned as
if a FETCH of those flags was done.

Equivalent to FLAGS, but without returning a new value.

Add the argument to the flags for the message. The new value of the flags is
returned as if a FETCH of those flags was done.

Equivalent to +FLAGS, but without returning a new value.

Remove the argument from the flags for the message. The new value of the
flags is returned as if a FETCH of those flags was done.

Equivalent to -FLAGS, but without returning a new value.

 Example: C: A003 STORE 2:4 +FLAGS (\Deleted)
 S: * 2 FETCH (FLAGS (\Deleted \Seen))
 S: * 3 FETCH (FLAGS (\Deleted))
 S: * 4 FETCH (FLAGS (\Deleted \Flagged \Seen))
 S: A003 OK STORE completed

Arguments:

Responses:

Result:

6.4.7. COPY Command

sequence set

mailbox name

no specific responses for this command

OK - copy completed

NO - copy error: can't copy those messages or to that

name

BAD - command unknown or arguments invalid

The COPY command copies the specified message(s) to the end of the specified destination
mailbox. The flags and internal date of the message(s) be preserved in the copy.

If the destination mailbox does not exist, a server return an error. It
automatically create the mailbox. Unless it is certain that the destination mailbox can not be
created, the server send the response code "[TRYCREATE]" as the prefix of the text of the
tagged NO response. This gives a hint to the client that it can attempt a CREATE command and
retry the COPY if the CREATE is successful.

If the COPY command is unsuccessful for any reason, server implementations restore the
destination mailbox to its state before the COPY attempt (other than possibly incrementing
UIDNEXT), i.e. partial copy be done.

SHOULD

MUST MUST NOT

MUST

MUST

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 85

Arguments:

Responses:

Result:

6.4.8. MOVE Command

sequence set

mailbox name

no specific responses for this command

OK - move completed

NO - move error: can't move those messages or to that

name

BAD - command unknown or arguments invalid

The MOVE command moves the specified message(s) to the end of the specified destination
mailbox. The flags and internal date of the message(s) be preserved.

This means that a new message is created in the target mailbox with a new UID, the original
message is removed from the source mailbox, and it appears to the client as a single action. This
has the same effect for each message as this sequence:

[UID] COPY
[UID] STORE +FLAGS.SILENT \DELETED
UID EXPUNGE

Although the effect of the MOVE is the same as the preceding steps, the semantics are not
identical: The intermediate states produced by those steps do not occur, and the response codes
are different. In particular, though the COPY and EXPUNGE response codes will be returned,
response codes for a STORE be generated and the \Deleted flag be set for
any message.

On successful completion of a COPY, the server returns a COPYUID response code (see Section
7.1). Two exception to this requirement are listed below.

In the case of a mailbox that has permissions set so that the client can COPY to the mailbox, but
not SELECT or EXAMINE it, the server send an COPYUID response code as it would
disclose information about the mailbox.

In the case of a mailbox that has UIDNOTSTICKY status (see Section 7.1), the server omit the
COPYUID response code as it is not meaningful.

MUST NOT

MAY

 Example: C: A003 COPY 2:4 MEETING
 S: A003 OK [COPYUID 38505 304,319:320 3956:3958] COPY
completed

SHOULD

1.
2.
3.

MUST NOT MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 86

Unlike the COPY command, MOVE of a set of messages might fail partway through the set.
Regardless of whether the command is successful in moving the entire set, each individual
message either be moved or unaffected. The server leave each message in a state
where it is in at least one of the source or target mailboxes (no message can be lost or orphaned).
The server leave any message in both mailboxes (it would be bad for a partial
failure to result in a bunch of duplicate messages). This is true even if the server returns a tagged
NO response to the command.

If the destination mailbox does not exist, a server return an error. It
automatically create the mailbox. Unless it is certain that the destination mailbox can not be
created, the server send the response code "[TRYCREATE]" as the prefix of the text of the
tagged NO response. This gives a hint to the client that it can attempt a CREATE command and
retry the MOVE if the CREATE is successful.

Because of the similarity of MOVE to COPY, extensions that affect COPY affect MOVE in the same
way. Response codes listed in Section 7.1, as well as those defined by extensions, are sent as
indicated for COPY.

Servers send COPYUID in response to a MOVE or a UID MOVE (see Section 6.4.9) command. For
additional information about COPYUID see Section 7.1. Note that there are several exceptions
listed in Section 6.4.7 that allow servers not to return COPYUID.

Servers are also to send the COPYUID response code in an untagged OK before sending
EXPUNGE or similar responses. (Sending COPYUID in the tagged OK, as described in the UIDPLUS
specification, means that clients first receive an EXPUNGE for a message and afterwards
COPYUID for the same message. It can be unnecessarily difficult to process that sequence
usefully.)

Note that the server may send unrelated EXPUNGE responses as well, if any happen to have been
expunged at the same time; this is normal IMAP operation.

Note that moving a message to the currently selected mailbox (that is, where the source and
target mailboxes are the same) is allowed when copying the message to the currently selected
mailbox is allowed.

The server may send EXPUNGE responses before the tagged response, so the client cannot safely
send more commands with message sequence number arguments while the server is processing
MOVE.

MUST MUST

SHOULD NOT

MUST MUST NOT

MUST

REQUIRED

 An example:
 C: a UID MOVE 42:69 foo
 S: * OK [COPYUID 432432 42:69 1202:1229]
 S: * 22 EXPUNGE
 ...More EXPUNGE responses from the server...
 S: a OK Done

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 87

MOVE and UID MOVE can be pipelined with other commands, but care has to be taken. Both
commands modify sequence numbers and also allow unrelated EXPUNGE responses. The
renumbering of other messages in the source mailbox following any EXPUNGE response can be
surprising and makes it unsafe to pipeline any command that relies on message sequence
numbers after a MOVE or UID MOVE. Similarly, MOVE cannot be pipelined with a command that
might cause message renumbering. See Section 5.5, for more information about ambiguities as
well as handling requirements for both clients and servers.

Arguments:

Responses:

Result:

6.4.9. UID Command

command name

command arguments

untagged responses: FETCH, ESEARCH, EXPUNGE

OK - UID command completed

NO - UID command error

BAD - command unknown or arguments invalid

The UID command has three forms. In the first form, it takes as its arguments a COPY, MOVE,
FETCH, or STORE command with arguments appropriate for the associated command. However,
the numbers in the sequence set argument are unique identifiers instead of message sequence
numbers. Sequence set ranges are permitted, but there is no guarantee that unique identifiers
will be contiguous.

A non-existent unique identifier is ignored without any error message generated. Thus, it is
possible for a UID FETCH command to return an OK without any data or a UID COPY, UID MOVE
or UID STORE to return an OK without performing any operations.

In the second form, the UID command takes an EXPUNGE command with an extra parameter the
specified a sequence set of UIDs to operate on. The UID EXPUNGE command permanently
removes all messages that both have the \Deleted flag set and have a UID that is included in the
specified sequence set from the currently selected mailbox. If a message either does not have the
\Deleted flag set or has a UID that is not included in the specified sequence set, it is not affected.

UID EXPUNGE is particularly useful for disconnected use clients. By using UID EXPUNGE
instead of EXPUNGE when resynchronizing with the server, the client can ensure that it does
not inadvertantly remove any messages that have been marked as \Deleted by other clients
between the time that the client was last connected and the time the client resynchronizes.

 Example: C: A003 UID EXPUNGE 3000:3002
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: A003 OK UID EXPUNGE completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 88

6.5. Client Commands - Experimental/Expansion
Each command which is not part of this specification have at least one capability name
(see Section 6.1.1) associated with it. (Multiple commands can be associated with the same
capability name.)

Server implementations send any added (not specified in this specification) untagged
responses, unless the client requested it by issuing the associated experimental command
(specified in an extension document) or the ENABLE command (Section 6.3.1).

In the third form, the UID command takes a SEARCH command with SEARCH command
arguments. The interpretation of the arguments is the same as with SEARCH; however, the
numbers returned in a ESEARCH response for a UID SEARCH command are unique identifiers
instead of message sequence numbers. Also, the corresponding ESEARCH response include
the UID indicator. For example, the command UID SEARCH 1:100 UID 443:557 returns the unique
identifiers corresponding to the intersection of two sequence sets, the message sequence number
range 1:100 and the UID range 443:557.

Note: in the above example, the UID range 443:557 appears. The same comment about a non-
existent unique identifier being ignored without any error message also applies here. Hence,
even if neither UID 443 or 557 exist, this range is valid and would include an existing UID
495.

Also note that a UID range of 559:* always includes the UID of the last message in the
mailbox, even if 559 is higher than any assigned UID value. This is because the contents of a
range are independent of the order of the range endpoints. Thus, any UID range with * as
one of the endpoints indicates at least one message (the message with the highest numbered
UID), unless the mailbox is empty.

The number after the "*" in an untagged FETCH or EXPUNGE response is always a message
sequence number, not a unique identifier, even for a UID command response. However, server
implementations implicitly include the UID message data item as part of any FETCH
response caused by a UID command, regardless of whether a UID was specified as a message
data item to the FETCH.

Note: The rule about including the UID message data item as part of a FETCH response primarily
applies to the UID FETCH and UID STORE commands, including a UID FETCH command that does
not include UID as a message data item. Although it is unlikely that the other UID commands will
cause an untagged FETCH, this rule applies to these commands as well.

MUST

MUST

 Example: C: A999 UID FETCH 4827313:4828442 FLAGS
 S: * 23 FETCH (FLAGS (\Seen) UID 4827313)
 S: * 24 FETCH (FLAGS (\Seen) UID 4827943)
 S: * 25 FETCH (FLAGS (\Seen) UID 4828442)
 S: A999 OK UID FETCH completed

MUST

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 89

The following example demonstrates how a client can check for presence of a fictitious XPIG-
LATIN capability that adds the XPIG-LATIN command and the the XPIG-LATIN untagged
response. (Note that for an extension the command name and the capability name don't have to
be the same.)

 Example: C: a441 CAPABILITY
 S: * CAPABILITY IMAP4rev2 XPIG-LATIN
 S: a441 OK CAPABILITY completed
 C: A442 XPIG-LATIN
 S: * XPIG-LATIN ow-nay eaking-spay ig-pay atin-lay
 S: A442 OK XPIG-LATIN ompleted-cay

7. Server Responses
Server responses are in three forms: status responses, server data, and command continuation
request. The information contained in a server response, identified by "Contents:" in the
response descriptions below, is described by function, not by syntax. The precise syntax of server
responses is described in the Formal Syntax (Section 9).

The client be prepared to accept any response at all times.

Status responses can be tagged or untagged. Tagged status responses indicate the completion
result (OK, NO, or BAD status) of a client command, and have a tag matching the command.

Some status responses, and all server data, are untagged. An untagged response is indicated by
the token "*" instead of a tag. Untagged status responses indicate server greeting, or server status
that does not indicate the completion of a command (for example, an impending system
shutdown alert). For historical reasons, untagged server data responses are also called
"unsolicited data", although strictly speaking, only unilateral server data is truly "unsolicited".

Certain server data be remembered by the client when it is received; this is noted in the
description of that data. Such data conveys critical information which affects the interpretation
of all subsequent commands and responses (e.g., updates reflecting the creation or destruction of
messages).

Other server data be remembered for later reference; if the client does not need to
remember the data, or if remembering the data has no obvious purpose (e.g., a SEARCH response
when no SEARCH command is in progress), the data can be ignored.

An example of unilateral untagged server data occurs when the IMAP connection is in the
selected state. In the selected state, the server checks the mailbox for new messages as part of
command execution. Normally, this is part of the execution of every command; hence, a NOOP
command suffices to check for new messages. If new messages are found, the server sends
untagged EXISTS response reflecting the new size of the mailbox. Server implementations that
offer multiple simultaneous access to the same mailbox also send appropriate unilateral
untagged FETCH and EXPUNGE responses if another agent changes the state of any message flags
or expunges any messages.

MUST

MUST

SHOULD

SHOULD

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 90

Command continuation request responses use the token "+" instead of a tag. These responses are
sent by the server to indicate acceptance of an incomplete client command and readiness for the
remainder of the command.

ALERT

ALREADYEXISTS

APPENDUID

7.1. Server Responses - Generic Status Responses
Status responses are OK, NO, BAD, PREAUTH and BYE. OK, NO, and BAD can be tagged or
untagged. PREAUTH and BYE are always untagged.

Status responses include an "response code". A response code consists of data
inside square brackets in the form of an atom, possibly followed by a space and arguments. The
response code contains additional information or status codes for client software beyond the OK/
NO/BAD condition, and are defined when there is a specific action that a client can take based
upon the additional information.

The currently defined response codes are:

The human-readable text contains a special alert that are presented to the user in a
fashion that calls the user's attention to the message. Content of ALERT response codes
received on a connection without TLS or SASL security layer confidentiality be
ignored by clients. If displayed, such alerts be clearly marked as potentially
suspicious. (Note that some existing clients are known to hyperlink returned text which
make them very dangerous.) Alerts received after successful establishment of a TLS/SASL
confidentiality layer be presented to the user.

The operation attempts to create something that already exists, such as when
the CREATE or RENAME directories attempt to create a mailbox and there is already one of
that name.

C: o356 RENAME this that

S: o356 NO [ALREADYEXISTS] Mailbox "that" already exists

Followed by the UIDVALIDITY of the destination mailbox and the UID assigned to
the appended message in the destination mailbox, indicates that the message has been
appended to the destination mailbox with that UID.

If the server also supports the extension, and if multiple messages were
appended in the APPEND command, then the second value is a UID set containing the UIDs
assigned to the appended messages, in the order they were transmitted in the APPEND
command. This UID set may not contain extraneous UIDs or the symbol "*".

Note: the UID set form of the APPENDUID response code be used if only a
single message was appended. In particular, a server send a range such as
123:123. This is because a client that does not support expects only a
single UID and not a UID set.

MAY OPTIONAL

SHOULD
MUST

MUST

[MULTIAPPEND]

MUST NOT
MUST NOT
[MULTIAPPEND]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 91

AUTHENTICATIONFAILED

AUTHORIZATIONFAILED

BADCHARSET

CANNOT

CAPABILITY

UIDs are assigned in strictly ascending order in the mailbox (refer to Section 2.3.1.1); note
that a range of 12:10 is exactly equivalent to 10:12 and refers to the sequence 10,11,12.

This response code is returned in a tagged OK response to the APPEND command.

Authentication failed for some reason on which the server is
unwilling to elaborate. Typically, this includes "unknown user" and "bad password".

This is the same as not sending any response code, except that when a client sees
AUTHENTICATIONFAILED, it knows that the problem wasn't, e.g., UNAVAILABLE, so there's
no point in trying the same login/password again later.

C: b LOGIN "fred" "foo"

S: b NO [AUTHENTICATIONFAILED] Authentication failed

Authentication succeeded in using the authentication identity, but the
server cannot or will not allow the authentication identity to act as the requested
authorization identity. This is only applicable when the authentication and authorization
identities are different.

C: c1 AUTHENTICATE PLAIN

[...]

S: c1 NO [AUTHORIZATIONFAILED] No such authorization-ID

C: c2 AUTHENTICATE PLAIN

[...]

S: c2 NO [AUTHORIZATIONFAILED] Authenticator is not an admin

Optionally followed by a parenthesized list of charsets. A SEARCH failed because
the given charset is not supported by this implementation. If the optional list of charsets is
given, this lists the charsets that are supported by this implementation.

The operation violates some invariant of the server and can never succeed.

C: l create "///////"

S: l NO [CANNOT] Adjacent slashes are not supported

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 92

CLIENTBUG

CLOSED

CONTACTADMIN

COPYUID

Followed by a list of capabilities. This can appear in the initial OK or PREAUTH response to
transmit an initial capabilities list. It can also appear in tagged responses to LOGIN or
AUTHENTICATE commands. This makes it unnecessary for a client to send a separate
CAPABILITY command if it recognizes this response code and there was no change to the
TLS and/or authentication state since it was received.

The server has detected a client bug. This can accompany all of OK, NO, and BAD,
depending on what the client bug is.

C: k1 select "/archive/projects/experiment-iv"

[...]

S: k1 OK [READ-ONLY] Done

C: k2 status "/archive/projects/experiment-iv" (messages)

[...]

S: k2 OK [CLIENTBUG] Done

The user should contact the system administrator or support desk.

C: e login "fred" "foo"

S: e NO [CONTACTADMIN]

Followed by the UIDVALIDITY of the destination mailbox, a UID set containing the
UIDs of the message(s) in the source mailbox that were copied to the destination mailbox,
followed by another UID set containing the UIDs assigned to the copied message(s) in the
destination mailbox, indicates that the message(s) have been copied to the destination
mailbox with the stated UID(s).

The source UID set is in the order the message(s) were copied; the destination UID set
corresponds to the source UID set and is in the same order. Neither of the UID sets may
contain extraneous UIDs or the symbol "*".

The CLOSED response code has no parameters. A server return the CLOSED response
code when the currently selected mailbox is closed implicitly using the SELECT/EXAMINE
command on another mailbox. The CLOSED response code serves as a boundary between
responses for the previously opened mailbox (which was closed) and the newly selected
mailbox; all responses before the CLOSED response code relate to the mailbox that was
closed, and all subsequent responses relate to the newly opened mailbox.

There is no need to return the CLOSED response code on completion of the CLOSE or the
UNSELECT command (or similar), whose purpose is to close the currently selected mailbox
without opening a new one.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 93

CORRUPTION

EXPIRED

EXPUNGEISSUED

HASCHILDREN

INUSE

UIDs are assigned in strictly ascending order in the mailbox (refer to Section 2.3.1.1); note
that a range of 12:10 is exactly equivalent to 10:12 and refers to the sequence 10,11,12.

This response code is returned in a tagged OK response to the COPY/UID COPY command
or in the untagged OK response to the MOVE/UID MOVE command.

The server discovered that some relevant data (e.g., the mailbox) are corrupt.
This response code does not include any information about what's corrupt, but the server
can write that to its logfiles.

C: i select "/archive/projects/experiment-iv"

S: i NO [CORRUPTION] Cannot open mailbox

Either authentication succeeded or the server no longer had the necessary data;
either way, access is no longer permitted using that passphrase. The client or user should
get a new passphrase.

C: d login "fred" "foo"

S: d NO [EXPIRED] That password isn't valid any more

Someone else has issued an EXPUNGE for the same mailbox. The client may
want to issue NOOP soon. discusses this subject in depth.

C: h search from maria@example.com

S: * ESEARCH (TAG "h") ALL 1:3,5,8,13,21,42

S: h OK [EXPUNGEISSUED] Search completed

The mailbox delete operation failed because the mailbox has one or more
children and the server doesn't allow deletion of mailboxes with children.

C: m356 DELETE Notes

S: o356 NO [HASCHILDREN] Mailbox "Notes" has children that need to be deleted first

An operation has not been carried out because it involves sawing off a branch someone
else is sitting on. Someone else may be holding an exclusive lock needed for this operation,
or the operation may involve deleting a resource someone else is using, typically a
mailbox.

The operation may succeed if the client tries again later.

C: g delete "/archive/projects/experiment-iv"

S: g NO [INUSE] Mailbox in use

[IMAP-MULTIACCESS]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 94

LIMIT

NONEXISTENT

NOPERM

OVERQUOTA

PARSE

PERMANENTFLAGS

The operation ran up against an implementation limit of some kind, such as the number
of flags on a single message or the number of flags used in a mailbox.

C: m STORE 42 FLAGS f1 f2 f3 f4 f5 ... f250

S: m NO [LIMIT] At most 32 flags in one mailbox supported

The operation attempts to delete something that does not exist. Similar to
ALREADYEXISTS.

C: p RENAME this that

S: p NO [NONEXISTENT] No such mailbox

The access control system (e.g., Access Control List (ACL), see) does not
permit this user to carry out an operation, such as selecting or creating a mailbox.

C: f select "/archive/projects/experiment-iv"

S: f NO [NOPERM] Access denied

The user would be over quota after the operation. (The user may or may not be
over quota already.)

Note that if the server sends OVERQUOTA but doesn't support the IMAP QUOTA extension
defined by , then there is a quota, but the client cannot find out what the quota
is.

C: n1 uid copy 1:* oldmail

S: n1 NO [OVERQUOTA] Sorry

C: n2 uid copy 1:* oldmail

S: n2 OK [OVERQUOTA] You are now over your soft quota

The human-readable text represents an error in parsing the header or
 headers of a message in the mailbox.

Followed by a parenthesized list of flags, indicates which of the known
flags the client can change permanently. Any flags that are in the FLAGS untagged
response, but not the PERMANENTFLAGS list, can not be set permanently. The
PERMANENTFLAGS list can also include the special flag *, which indicates that it is
possible to create new keywords by attempting to store those keywords in the mailbox. If

[RFC4314]

[RFC2087]

[RFC-5322]
[MIME-IMB]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 95

PRIVACYREQUIRED

READ-ONLY

READ-WRITE

SERVERBUG

TRYCREATE

UIDNEXT

UIDNOTSTICKY

the client attempts to STORE a flag that is not in the PERMANENTFLAGS list, the server will
either ignore the change or store the state change for the remainder of the current session
only.

There is no need for a server that included the special flag * to return a new
PERMANENTFLAGS response code when a new keyword was successfully set on a message
upon client request. However if the server has a limit on the number of different keywords
that can be stored in a mailbox and that limit is reached, the server send a new
PERMANENTFLAGS response code without the special flag *.

The operation is not permitted due to a lack of data confidentiality. If
Transport Layer Security (TLS) is not in use, the client could try STARTTLS (see Section
6.2.1) or alternatively reconnect on Implicit TLS port, and then repeat the operation.

C: d login "fred" "foo"

S: d NO [PRIVACYREQUIRED] Connection offers no privacy

C: d select inbox

S: d NO [PRIVACYREQUIRED] Connection offers no privacy

The mailbox is selected read-only, or its access while selected has changed from
read-write to read-only.

The mailbox is selected read-write, or its access while selected has changed from
read-only to read-write.

The server encountered a bug in itself or violated one of its own invariants.

C: j select "/archive/projects/experiment-iv"

S: j NO [SERVERBUG] This should not happen

An APPEND, COPY or MOVE attempt is failing because the target mailbox does not
exist (as opposed to some other reason). This is a hint to the client that the operation can
succeed if the mailbox is first created by the CREATE command.

Followed by a decimal number, indicates the next unique identifier value. Refer to
Section 2.3.1.1 for more information.

The selected mailbox is supported by a mail store that does not support
persistent UIDs; that is, UIDVALIDITY will be different each time the mailbox is selected.
Consequently, APPEND or COPY to this mailbox will not return an APPENDUID or COPYUID
response code.

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 96

UIDVALIDITY

UNAVAILABLE

UNKNOWN-CTE

Contents:

Contents:

This response code is returned in an untagged NO response to the SELECT command.

Note: servers have any UIDNOTSTICKY mail stores. This facility exists to
support legacy mail stores in which it is technically infeasible to support persistent
UIDs. This should be avoided when designing new mail stores.

Followed by a decimal number, indicates the unique identifier validity value.
Refer to Section 2.3.1.1 for more information.

Temporary failure because a subsystem is down. For example, an IMAP server
that uses a Lightweight Directory Access Protocol (LDAP) or Radius server for
authentication might use this response code when the LDAP/Radius server is down.

C: a LOGIN "fred" "foo"

S: a NO [UNAVAILABLE] User's backend down for maintenance

The server does not know how to decode the section's Content-Transfer-
Encoding.

Client implementations ignore response codes that they do not recognize.

7.1.1. OK Response

 response code

human-readable text

The OK response indicates an information message from the server. When tagged, it indicates
successful completion of the associated command. The human-readable text be presented to
the user as an information message. The untagged form indicates an information-only message;
the nature of the information be indicated by a response code.

The untagged form is also used as one of three possible greetings at connection startup. It
indicates that the connection is not yet authenticated and that a LOGIN or an AUTHENTICATE
command is needed.

7.1.2. NO Response

 response code

human-readable text

SHOULD NOT

MUST

OPTIONAL

MAY

MAY

 Example: S: * OK IMAP4rev2 server ready
 C: A001 LOGIN fred blurdybloop
 S: * OK [ALERT] System shutdown in 10 minutes
 S: A001 OK LOGIN Completed

OPTIONAL

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 97

Contents:

The NO response indicates an operational error message from the server. When tagged, it
indicates unsuccessful completion of the associated command. The untagged form indicates a
warning; the command can still complete successfully. The human-readable text describes the
condition.

7.1.3. BAD Response

 response code

human-readable text

The BAD response indicates an error message from the server. When tagged, it reports a
protocol-level error in the client's command; the tag indicates the command that caused the
error. The untagged form indicates a protocol-level error for which the associated command can
not be determined; it can also indicate an internal server failure. The human-readable text
describes the condition.

 Example: C: A222 COPY 1:2 owatagusiam
 S: * NO Disk is 98% full, please delete unnecessary data
 S: A222 OK COPY completed
 C: A223 COPY 3:200 blurdybloop
 S: * NO Disk is 98% full, please delete unnecessary data
 S: * NO Disk is 99% full, please delete unnecessary data
 S: A223 NO COPY failed: disk is full

OPTIONAL

 Example: C: ...very long command line...
 S: * BAD Command line too long
 C: ...empty line...
 S: * BAD Empty command line
 C: A443 EXPUNGE
 S: * BAD Disk crash, attempting salvage to a new disk!
 S: * OK Salvage successful, no data lost
 S: A443 OK Expunge completed

Contents:

7.1.4. PREAUTH Response

 response code

human-readable text

The PREAUTH response is always untagged, and is one of three possible greetings at connection
startup. It indicates that the connection has already been authenticated by external means; thus
no LOGIN/AUTHENTICATE command is needed.

Because PREAUTH moves the connection directly to the authenticated state, it effectively
prevents the client from using the STARTTLS command Section 6.2.1. For this reason PREAUTH
response only be returned by servers on connections that are protected by TLS (such as

OPTIONAL

SHOULD

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 98

Contents:

7.1.5. BYE Response

 response code

human-readable text

The BYE response is always untagged, and indicates that the server is about to close the
connection. The human-readable text be displayed to the user in a status report by the
client. The BYE response is sent under one of four conditions:

as part of a normal logout sequence. The server will close the connection after sending the
tagged OK response to the LOGOUT command.
as a panic shutdown announcement. The server closes the connection immediately.
as an announcement of an inactivity autologout. The server closes the connection
immediately.
as one of three possible greetings at connection startup, indicating that the server is not
willing to accept a connection from this client. The server closes the connection immediately.

The difference between a BYE that occurs as part of a normal LOGOUT sequence (the first case)
and a BYE that occurs because of a failure (the other three cases) is that the connection closes
immediately in the failure case. In all cases the client continue to read response data
from the server until the connection is closed; this will ensure that any pending untagged or
completion responses are read and processed.

on implicit TLS port) or protected through other means such as IPSec. Clients that
require mandatory TLS close the connection after receiving PREAUTH response on a non
protected port.

[RFC8314]
MUST

 Example: S: * PREAUTH IMAP4rev2 server logged in as Smith

OPTIONAL

MAY

1.

2.
3.

4.

SHOULD

 Example: S: * BYE Autologout; idle for too long

7.2. Server Responses - Server Status
These responses are always untagged. This is how server status data are transmitted from the
server to the client.

Contents:

7.2.1. ENABLED Response

capability listing

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 99

The ENABLED response occurs as a result of an ENABLE command. The capability listing
contains a space-separated listing of capability names that the server supports and that were
successfully enabled. The ENABLED response may contain no capabilities, which means that no
extensions listed by the client were successfully enabled.

 Example: S: * ENABLED CONDSTORE QRESYNC

Contents:

7.2.2. CAPABILITY Response

capability listing

The CAPABILITY response occurs as a result of a CAPABILITY command. The capability listing
contains a space-separated listing of capability names that the server supports. The capability
listing include the atom "IMAP4rev2", but note that it doesn't have to be the first capability
listed. The order of capability names has no significance.

In addition, client and server implementations implement the "STARTTLS" and
"LOGINDISABLED" (only on the cleartext port), and "AUTH=PLAIN" (described in)
capabilities. See the Security Considerations (Section 11) for important information related to
these capabilities.

A capability name which begins with "AUTH=" indicates that the server supports that particular
authentication mechanism .

The LOGINDISABLED capability indicates that the LOGIN command is disabled, and that the
server will respond with a tagged NO response to any attempt to use the LOGIN command even if
the user name and password are valid. An IMAP client issue the LOGIN command if
the server advertises the LOGINDISABLED capability.

Other capability names indicate that the server supports an extension, revision, or amendment
to the IMAP4rev2 protocol. If IMAP4rev1 capability is not advertised, server responses
conform to this document until the client issues a command that uses the associated capability. If
both IMAP4rev1 and IMAP4rev2 capabilities are advertised, server responses conform to
RFC 3501 until the client issues a command that uses the associated capability. (For example, the
client can issue ENABLE IMAP4rev2 to enable IMAP4rev2 specific behaviour).

Capability names be registered with IANA using RFC Required policy. A server
 offer unregistered capability names.

Client implementations require any capability name other than "IMAP4rev2", and
possibly "STARTTLS" and "LOGINDISABLED" (on a cleartext port). Client implementations
ignore any unknown capability names.

MUST

MUST
[PLAIN]

[SASL]

MUST NOT

MUST

MUST

SHOULD SHOULD
NOT

SHOULD NOT
MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 100

7.3. Server Responses - Mailbox Status
These responses are always untagged. This is how mailbox status data are transmitted from the
server to the client. Many of these responses typically result from a command with the same
name.

A server send capabilities automatically, by using the CAPABILITY response code in the
initial PREAUTH or OK responses, and by sending an updated CAPABILITY response code in the
tagged OK response as part of a successful authentication. It is unnecessary for a client to send a
separate CAPABILITY command if it recognizes these automatic capabilities and there was no
change to the TLS and/or authentication state since they were received.

The list of capabilities returned by a server change during the connection. In particular, it is
quite common for the server to change list of capabilities after successful TLS negotiation
(STARTTLS command) and/or after successful authentication (AUTHENTICATE or LOGIN
commands).

Note that in the above example XPIG-LATIN is a fictitious capability name.

MAY

MAY

 Example: S: * CAPABILITY STARTTLS AUTH=GSSAPI IMAP4rev2 LOGINDISABLED
 XPIG-LATIN

Contents:

\NonExistent

7.3.1. LIST Response

name attributes

hierarchy delimiter

name

 extension data

The LIST response occurs as a result of a LIST command. It returns a single name that matches
the LIST specification. There can be multiple LIST responses for a single LIST command.

The following base mailbox name attributes are defined:

 The "\NonExistent" attribute indicates that a mailbox name does not refer to an
existing mailbox. Note that this attribute is not meaningful by itself, as mailbox names that
match the canonical LIST pattern but don't exist must not be returned unless one of the two
conditions listed below is also satisfied:

The mailbox name also satisfies the selection criteria (for example, it is subscribed and
the "SUBSCRIBED" selection option has been specified).
"RECURSIVEMATCH" has been specified, and the mailbox name has at least one
descendant mailbox name that does not match the LIST pattern and does match the
selection criteria.

OPTIONAL

1.

2.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 101

\Noinferiors

\Noselect

\HasChildren

\HasNoChildren

\Marked

\Unmarked

\Subscribed

\Remote

In practice, this means that the "\NonExistent" attribute is usually returned with one or more
of "\Subscribed", "\Remote", "\HasChildren", or the CHILDINFO extended data item.

The "\NonExistent" attribute implies "\NoSelect".

It is not possible for any child levels of hierarchy to exist under this name; no child
levels exist now and none can be created in the future.

It is not possible to use this name as a selectable mailbox.

The presence of this attribute indicates that the mailbox has child mailboxes. A
server set this attribute if there are child mailboxes and the user does not have
permission to access any of them. In this case, \HasNoChildren be used. In many
cases, however, a server may not be able to efficiently compute whether a user has access to
any child mailbox. Note that even though the \HasChildren attribute for a mailbox must be
correct at the time of processing of the mailbox, a client must be prepared to deal with a
situation when a mailbox is marked with the \HasChildren attribute, but no child mailbox
appears in the response to the LIST command. This might happen, for example, due to
children mailboxes being deleted or made inaccessible to the user (using access control) by
another client before the server is able to list them.

The presence of this attribute indicates that the mailbox has NO child
mailboxes that are accessible to the currently authenticated user.

The mailbox has been marked "interesting" by the server; the mailbox probably
contains messages that have been added since the last time the mailbox was selected.

The mailbox does not contain any additional messages since the last time the
mailbox was selected.

The mailbox name was subscribed to using the SUBSCRIBE command.

The mailbox is a remote mailbox.

It is an error for the server to return both a \HasChildren and a \HasNoChildren attribute in the
same LIST response. A client that encounters a LIST response with both \HasChildren and
\HasNoChildren attributes present should act as if both are absent in the LIST response.

Note: the \HasNoChildren attribute should not be confused with the \NoInferiors attribute,
which indicates that no child mailboxes exist now and none can be created in the future.

If it is not feasible for the server to determine whether or not the mailbox is "interesting", the
server send either \Marked or \Unmarked. The server send more than
one of \Marked, \Unmarked, and \Noselect for a single mailbox, and send none of these.

In addition to the base mailbox name attributes defined above, an IMAP server also include
any or all of the following attributes that denote "role" (or "special-use") of a mailbox. These
attributes are included along with base attributes defined above. A given mailbox may have

SHOULD NOT
SHOULD

SHOULD NOT MUST NOT
MAY

MAY

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 102

\All

\Archive

\Drafts

\Flagged

\Junk

\Sent

\Trash

none, one, or more than one of these attributes. In some cases, a special use is advice to a client
about what to put in that mailbox. In other cases, it's advice to a client about what to expect to
find there.

This mailbox presents all messages in the user's message store. Implementations omit
some messages, such as, perhaps, those in \Trash and \Junk. When this special use is
supported, it is almost certain to represent a virtual mailbox.

This mailbox is used to archive messages. The meaning of an "archival" mailbox is
server-dependent; typically, it will be used to get messages out of the inbox, or otherwise keep
them out of the user's way, while still making them accessible.

This mailbox is used to hold draft messages -- typically, messages that are being
composed but have not yet been sent. In some server implementations, this might be a virtual
mailbox, containing messages from other mailboxes that are marked with the "\Draft"
message flag. Alternatively, this might just be advice that a client put drafts here.

This mailbox presents all messages marked in some way as "important". When this
special use is supported, it is likely to represent a virtual mailbox collecting messages (from
other mailboxes) that are marked with the "\Flagged" message flag.

This mailbox is where messages deemed to be junk mail are held. Some server
implementations might put messages here automatically. Alternatively, this might just be
advice to a client-side spam filter.

This mailbox is used to hold copies of messages that have been sent. Some server
implementations might put messages here automatically. Alternatively, this might just be
advice that a client save sent messages here.

This mailbox is used to hold messages that have been deleted or marked for deletion. In
some server implementations, this might be a virtual mailbox, containing messages from
other mailboxes that are marked with the "\Deleted" message flag. Alternatively, this might
just be advice that a client that chooses not to use the IMAP "\Deleted" model should use this
as its trash location. In server implementations that strictly expect the IMAP "\Deleted" model,
this special use is likely not to be supported.

All of special-use attributes are , and any given server or message store may support
any combination of the attributes, or none at all. In most cases, there will likely be at most one
mailbox with a given attribute for a given user, but in some server or message store
implementations it might be possible for multiple mailboxes to have the same special-use
attribute.

Special-use attributes are likely to be user-specific. User Adam might share his \Sent mailbox with
user Barb, but that mailbox is unlikely to also serve as Barb's \Sent mailbox.

Other mailbox name attributes can be found in the "IMAP Mailbox Name Attributes" registry
.

MAY

OPTIONAL

[IMAP-MAILBOX-NAME-ATTRS-REG]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 103

Contents:

Contents:

7.3.2. NAMESPACE Response

the prefix and hierarchy delimiter to the server's Personal Namespace(s), Other
Users' Namespace(s), and Shared Namespace(s)

The NAMESPACE response occurs as a result of a NAMESPACE command. It contains the prefix
and hierarchy delimiter to the server's Personal Namespace(s), Other Users' Namespace(s), and
Shared Namespace(s) that the server wishes to expose. The response will contain a NIL for any
namespace class that is not available. Namespace-Response-Extensions ABNF non terminal is
defined for extensibility and be included in the response.

7.3.3. STATUS Response

name

status parenthesized list

The hierarchy delimiter is a character used to delimit levels of hierarchy in a mailbox name. A
client can use it to create child mailboxes, and to search higher or lower levels of naming
hierarchy. All children of a top-level hierarchy node use the same separator character. A
NIL hierarchy delimiter means that no hierarchy exists; the name is a "flat" name.

The name represents an unambiguous left-to-right hierarchy, and be valid for use as a
reference in LIST command. Unless \Noselect or \NonExistent is indicated, the name also be
valid as an argument for commands, such as SELECT, that accept mailbox names.

The name might be followed by an series of extended fields, a parenthesized list of
tagged data (also referred to as "extended data item"). The first element of an extended field is a
string, which identifies the type of data. specified requirements on string registration
(which are called "tags" there; such tags are not to be confused with IMAP command tags), in
particular it said that "Tags be registered with IANA". This document doesn't change that.
See Section 9.5 of for the registration template. The server return data in the
extended fields that was not directly solicited by the client in the corresponding LIST command.
For example, the client can enable extra extended fields by using another IMAP extension that
make use of the extended LIST responses. The client ignore all extended fields it doesn't
recognize.

MUST

MUST
MUST

OPTIONAL

[RFC5258]

MUST
[RFC5258] MAY

MUST

 Example: S: * LIST (\Noselect) "/" ~/Mail/foo

 Example: S: * LIST (\Marked) ":" Tables (tablecloth (("edge" "lacy")
 ("color" "red")) Sample "text")
 S: * LIST () ":" Tables:new (tablecloth ("edge" "lacy")
 Sample ("text" "more text"))

MAY

 Example: S: * NAMESPACE (("" "/")) (("~" "/")) NIL

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 104

Contents:

MIN

MAX

ALL

COUNT

The STATUS response occurs as a result of an STATUS command. It returns the mailbox name that
matches the STATUS specification and the requested mailbox status information.

7.3.4. ESEARCH Response

one or more search-return-data pairs

The ESEARCH response occurs as a result of a SEARCH or UID SEARCH command.

The ESEARCH response starts with an optional search correlator. If it is missing, then the
response was not caused by a particular IMAP command, whereas if it is present, it contains the
tag of the command that caused the response to be returned.

The search correlator is followed by an optional UID indicator. If this indicator is present, all data
in the ESEARCH response refers to UIDs, otherwise all returned data refers to message numbers.

The rest of the ESEARCH response contains one or more search data pairs. Each pair starts with
unique return item name, followed by a space and the corresponding data. Search data pairs
may be returned in any order. Unless specified otherwise by an extension, any return item name

 appear only once in an ESEARCH response.

This document specifies the following return item names:

Returns the lowest message number/UID that satisfies the SEARCH criteria.

If the SEARCH results in no matches, the server include the MIN return item in
the ESEARCH response; however, it still send the ESEARCH response.

Returns the highest message number/UID that satisfies the SEARCH criteria.

If the SEARCH results in no matches, the server include the MAX return item in
the ESEARCH response; however, it still send the ESEARCH response.

Returns all message numbers/UIDs that satisfy the SEARCH criteria using the sequence-set
syntax. Note, the client assume that messages/UIDs will be listed in any
particular order.

If the SEARCH results in no matches, the server include the ALL return item in
the ESEARCH response; however, it still send the ESEARCH response.

Returns the number of messages that satisfy the SEARCH criteria. This return item
 always be included in the ESEARCH response.

 Example: S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)

SHOULD

MUST NOT
MUST

MUST NOT
MUST

MUST NOT

MUST NOT
MUST

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 105

7.4. Server Responses - Mailbox Size
These responses are always untagged. This is how changes in the size of the mailbox are
transmitted from the server to the client. Immediately following the "*" token is a number that
represents a message count.

7.5. Server Responses - Message Status
These responses are always untagged. This is how message data are transmitted from the server
to the client, often as a result of a command with the same name. Immediately following the "*"
token is a number that represents a message sequence number.

 Example: S: * ESEARCH UID COUNT 5 ALL 4:19,21,28

 Example: S: * ESEARCH (TAG "a567") UID COUNT 5 ALL 4:19,21,28

 Example: S: * ESEARCH COUNT 5 ALL 1:17,21

Contents:

7.3.5. FLAGS Response

flag parenthesized list

The FLAGS response occurs as a result of a SELECT or EXAMINE command. The flag
parenthesized list identifies the flags (at a minimum, the system-defined flags) that are applicable
for this mailbox. Flags other than the system flags can also exist, depending on server
implementation.

The update from the FLAGS response be remembered by the client.MUST

 Example: S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

Contents:

7.4.1. EXISTS Response

none

The EXISTS response reports the number of messages in the mailbox. This response occurs as a
result of a SELECT or EXAMINE command, and if the size of the mailbox changes (e.g., new
messages).

The update from the EXISTS response be remembered by the client.MUST

 Example: S: * 23 EXISTS

Contents:

7.5.1. EXPUNGE Response

none

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 106

The EXPUNGE response reports that the specified message sequence number has been
permanently removed from the mailbox. The message sequence number for each successive
message in the mailbox is immediately decremented by 1, and this decrement is reflected in
message sequence numbers in subsequent responses (including other untagged EXPUNGE
responses).

The EXPUNGE response also decrements the number of messages in the mailbox; it is not
necessary to send an EXISTS response with the new value.

As a result of the immediate decrement rule, message sequence numbers that appear in a set of
successive EXPUNGE responses depend upon whether the messages are removed starting from
lower numbers to higher numbers, or from higher numbers to lower numbers. For example, if
the last 5 messages in a 9-message mailbox are expunged, a "lower to higher" server will send
five untagged EXPUNGE responses for message sequence number 5, whereas a "higher to lower
server" will send successive untagged EXPUNGE responses for message sequence numbers 9, 8, 7,
6, and 5.

An EXPUNGE response be sent when no command is in progress, nor while
responding to a FETCH, STORE, or SEARCH command. This rule is necessary to prevent a loss of
synchronization of message sequence numbers between client and server. A command is not "in
progress" until the complete command has been received; in particular, a command is not "in
progress" during the negotiation of command continuation.

Note: UID FETCH, UID STORE, and UID SEARCH are different commands from FETCH, STORE,
and SEARCH. An EXPUNGE response be sent during a UID command.

The update from the EXPUNGE response be remembered by the client.

MUST NOT

MAY

MUST

 Example: S: * 44 EXPUNGE

Contents:

BINARY[<section-binary>]<<number>>

7.5.2. FETCH Response

message data

The FETCH response returns data about a message to the client. The data are pairs of data item
names and their values in parentheses. This response occurs as the result of a FETCH or STORE
command, as well as by unilateral server decision (e.g., flag updates).

The current data items are:

An <nstring> or <literal8> expressing the content of the
specified section after removing any Content-Transfer-Encoding-related encoding. If
<number> is present it refers to the offset within the DECODED section data.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 107

BINARY.SIZE[<section-binary>]

BODY

BODY[<section>]<<origin octet>>

If the domain of the decoded data is "8bit" and the data does not contain the NUL octet, the
server return the data in a <string> instead of a <literal8>; this allows the client to
determine if the "8bit" data contains the NUL octet without having to explicitly scan the
data stream for for NULs.

Messaging clients and servers have been notoriously lax in their adherence to the Internet
CRLF convention for terminating lines of textual data (text/* media types) in Internet
protocols. When sending data in BINARY[...] FETCH data item, servers ensure that
textual line-oriented sections are always transmitted using the IMAP4 CRLF line
termination syntax, regardless of the underlying storage representation of the data on the
server.

If the server does not know how to decode the section's Content-Transfer-Encoding, it
 fail the request and issue a "NO" response that contains the "UNKNOWN-CTE"

response code.

The size of the section after removing any Content-Transfer-
Encoding-related encoding. The value returned match the size of the <nstring> or
<literal8> that will be returned by the corresponding FETCH BINARY request.

If the server does not know how to decode the section's Content-Transfer-Encoding, it
 fail the request and issue a "NO" response that contains the "UNKNOWN-CTE"

response code.

A form of BODYSTRUCTURE without extension data.

A string expressing the body contents of the specified section.
The string be interpreted by the client according to the content transfer encoding,
body type, and subtype.

If the origin octet is specified, this string is a substring of the entire body contents, starting
at that origin octet. This means that BODY[]<0> be truncated, but BODY[] is NEVER
truncated.

Note: The origin octet facility be used by a server in a FETCH response unless
the client specifically requested it by means of a FETCH of a BODY
[<section>]<<partial>> data item.

8-bit textual data is permitted if a identifier is part of the body parameter
parenthesized list for this section. Note that headers (part specifiers HEADER or MIME, or
the header portion of a MESSAGE/RFC822 or MESSAGE/GLOBAL part), be in UTF-8.
Note also that the delimiting blank line between the header and the body is not
affected by header line subsetting; the blank line is always included as part of header data,
except in the case of a message which has no body and no blank line.

Non-textual data such as binary data be transfer encoded into a textual form, such
as BASE64, prior to being sent to the client. To derive the original binary data, the client

 decode the transfer encoded string.

SHOULD

MUST

MUST

MUST

MUST

SHOULD

MAY

MUST NOT

[CHARSET]

MAY
[RFC-5322]

MUST

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 108

BODYSTRUCTURE

body parameter parenthesized list

body disposition

body language

body location

A parenthesized list that describes the body structure of a
message. This is computed by the server by parsing the header fields,
defaulting various fields as necessary.

For example, a simple text message of 48 lines and 2279 octets can have a body structure
of: ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 2279 48)

Multiple parts are indicated by parenthesis nesting. Instead of a body type as the first
element of the parenthesized list, there is a sequence of one or more nested body
structures. The second element of the parenthesized list is the multipart subtype (mixed,
digest, parallel, alternative, etc.).

For example, a two part message consisting of a text and a BASE64-encoded text
attachment can have a body structure of: (("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL
NIL "7BIT" 1152 23)("TEXT" "PLAIN" ("CHARSET" "US-ASCII" "NAME" "cc.diff")
"<960723163407.20117h@cac.washington.edu>" "Compiler diff" "BASE64" 4554 73)
"MIXED")

Extension data follows the multipart subtype. Extension data is never returned with the
BODY fetch, but can be returned with a BODYSTRUCTURE fetch. Extension data, if present,

 be in the defined order. The extension data of a multipart body part are in the
following order:

A parenthesized list of attribute/value pairs [e.g.,
("foo" "bar" "baz" "rag") where "bar" is the value of "foo", and "rag" is the value of "baz"]
as defined in . Servers decode parameter value continuations and
parameter value character sets as described in , for example, if the message
contains parameters "baz*0", "baz*1" and "baz*2", the server should RFC2231-decode
them, concatenate and return the resulting value as a parameter "baz". Similarly, if the
message contains parameters "foo*0*" and "foo*1*", the server should RFC2231-decode
them, convert to UTF-8, concatenate and return the resulting value as a parameter
"foo*".

A parenthesized list, consisting of a disposition type string, followed by
a parenthesized list of disposition attribute/value pairs as defined in .
Servers decode parameter value continuations as described in .

A string or parenthesized list giving the body language value as defined in
.

A string giving the body content URI as defined in .

Any following extension data are not yet defined in this version of the protocol. Such
extension data can consist of zero or more NILs, strings, numbers, or potentially nested
parenthesized lists of such data. Client implementations that do a BODYSTRUCTURE fetch

 be prepared to accept such extension data. Server implementations send
such extension data until it has been defined by a revision of this protocol.

The basic fields of a non-multipart body part are in the following order:

[MIME-IMB]
[MIME-IMB]

MUST

[MIME-IMB] SHOULD
[RFC2231]

[DISPOSITION]
SHOULD [RFC2231]

[LANGUAGE-TAGS]

[LOCATION]

MUST MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 109

body type

body subtype

body parameter parenthesized list

body id

body description

body encoding

body size

body MD5

body disposition

body language

body location

ENVELOPE

A string giving the content media type name as defined in .

A string giving the content subtype name as defined in .

A parenthesized list of attribute/value pairs [e.g.,
("foo" "bar" "baz" "rag") where "bar" is the value of "foo" and "rag" is the value of "baz"]
as defined in .

A string giving the Content-ID header field value as defined in Section 7 of
.

A string giving the Content-Description header field value as defined in
Section 8 of .

A string giving the content transfer encoding as defined in Section 6 of
.

A number giving the size of the body in octets. Note that this size is the size in
its transfer encoding and not the resulting size after any decoding.

A body type of type MESSAGE and subtype RFC822 contains, immediately after the basic
fields, the envelope structure, body structure, and size in text lines of the encapsulated
message.

A body type of type TEXT contains, immediately after the basic fields, the size of the body
in text lines. Note that this size is the size in its content transfer encoding and not the
resulting size after any decoding.

Extension data follows the basic fields and the type-specific fields listed above. Extension
data is never returned with the BODY fetch, but can be returned with a BODYSTRUCTURE
fetch. Extension data, if present, be in the defined order.

The extension data of a non-multipart body part are in the following order:

A string giving the body MD5 value as defined in .

A parenthesized list with the same content and function as the body
disposition for a multipart body part.

A string or parenthesized list giving the body language value as defined in
.

A string giving the body content URI as defined in .

Any following extension data are not yet defined in this version of the protocol, and would
be as described above under multipart extension data.

A parenthesized list that describes the envelope structure of a message. This is
computed by the server by parsing the header into the component parts,
defaulting various fields as necessary.

[MIME-IMB]

[MIME-IMB]

[MIME-IMB]

[MIME-IMB]

[MIME-IMB]

[MIME-IMB]

MUST

[MD5]

[LANGUAGE-TAGS]

[LOCATION]

[RFC-5322]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 110

FLAGS

INTERNALDATE

RFC822.SIZE

UID

The fields of the envelope structure are in the following order: date, subject, from, sender,
reply-to, to, cc, bcc, in-reply-to, and message-id. The date, subject, in-reply-to, and message-
id fields are strings. The from, sender, reply-to, to, cc, and bcc fields are parenthesized lists
of address structures.

An address structure is a parenthesized list that describes an electronic mail address. The
fields of an address structure are in the following order: display name, at-domain-
list (source route, obs-route ABNF production from), mailbox name (local-part
ABNF production from), and host name.

 group syntax is indicated by a special form of address structure in which the
host name field is NIL. If the mailbox name field is also NIL, this is an end of group marker
(semi-colon in RFC 822 syntax). If the mailbox name field is non-NIL, this is a start of group
marker, and the mailbox name field holds the group name phrase.

If the Date, Subject, In-Reply-To, and Message-ID header fields are absent in the
header, the corresponding member of the envelope is NIL; if these header fields are
present but empty the corresponding member of the envelope is the empty string.

Note: some servers may return a NIL envelope member in the "present but empty" case.
Clients treat NIL and empty string as identical.

Note: requires that all messages have a valid Date header field. Therefore,
for a well-formed message the date member in the envelope can not be NIL or the
empty string. However it can be NIL for a malformed or a draft message.

Note: requires that the In-Reply-To and Message-ID header fields, if present,
have non-empty content. Therefore, for a well-formed message the in-reply-to and
message-id members in the envelope can not be the empty string. However they can
still be the empty string for a malformed message.

If the From, To, Cc, and Bcc header fields are absent in the header, or are
present but empty, the corresponding member of the envelope is NIL.

If the Sender or Reply-To header fields are absent in the header, or are present
but empty, the server sets the corresponding member of the envelope to be the same value
as the from member (the client is not expected to know to do this).

Note: requires that all messages have a valid From header field. Therefore,
for a well-formed message the from, sender, and reply-to members in the envelope can
not be NIL. However they can be NIL for a malformed or a draft message.

A parenthesized list of flags that are set for this message.

A string representing the internal date of the message.

A number expressing the size of the message.

A number expressing the unique identifier of the message.

[SMTP]
[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

SHOULD

[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

[RFC-5322]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 111

7.6. Server Responses - Command Continuation Request
The command continuation request response is indicated by a "+" token instead of a tag. This
form of response indicates that the server is ready to accept the continuation of a command from
the client. The remainder of this response is a line of text.

This response is used in the AUTHENTICATE command to transmit server data to the client, and
request additional client data. This response is also used if an argument to any command is a
synchronizing literal.

The client is not permitted to send the octets of the synchronizing literal unless the server
indicates that it is expected. This permits the server to process commands and reject errors on a
line-by-line basis. The remainder of the command, including the CRLF that terminates a
command, follows the octets of the literal. If there are any additional command arguments, the
literal octets are followed by a space and those arguments.

If the server chooses to send unsolicited FETCH responses, they include UID FETCH item.
Note that this is a new requirement when compared to RFC 3501.

MUST

 Example: S: * 23 FETCH (FLAGS (\Seen) RFC822.SIZE 44827 UID 447)

 Example: C: A001 LOGIN {11}
 S: + Ready for additional command text
 C: FRED FOOBAR {7}
 S: + Ready for additional command text
 C: fat man
 S: A001 OK LOGIN completed
 C: A044 BLURDYBLOOP {102856}
 S: A044 BAD No such command as "BLURDYBLOOP"

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 112

8. Sample IMAP4rev2 connection
The following is a transcript of an IMAP4rev2 connection on a non TLS port. A long line in this
sample is broken for editorial clarity.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 113

S: * OK [CAPABILITY STARTTLS AUTH=SCRAM-SHA-256 LOGINDISABLED
 IMAP4rev2] IMAP4rev2 Service Ready
C: a000 starttls
S: a000 OK Proceed with TLS negotiation
 <TLS negotiation>
C: A001 AUTHENTICATE SCRAM-SHA-256
 biwsbj11c2VyLHI9ck9wck5HZndFYmVSV2diTkVrcU8=
S: + cj1yT3ByTkdmd0ViZVJXZ2JORWtxTyVodllEcFdVYTJSYVRDQWZ1eEZJbGopaE5s
 RiRrMCxzPVcyMlphSjBTTlk3c29Fc1VFamI2Z1E9PSxpPTQwOTY=
C: Yz1iaXdzLHI9ck9wck5HZndFYmVSV2diTkVrcU8laHZZRHBXVWEyUmFUQ0FmdXhG
 SWxqKWhObEYkazAscD1kSHpiWmFwV0lrNGpVaE4rVXRlOXl0YWc5empmTUhnc3Ft
 bWl6N0FuZFZRPQ==
S: + dj02cnJpVFJCaTIzV3BSUi93dHVwK21NaFVaVW4vZEI1bkxUSlJzamw5NUc0PQ==
C:
S: A001 OK SCRAM-SHA-256 authentication successful
C: babc ENABLE IMAP4rev2
S: * ENABLED IMAP4rev2
S: babc OK Some capabilities enabled
C: a002 select inbox
S: * 18 EXISTS
S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
S: * OK [UIDVALIDITY 3857529045] UIDs valid
S: * LIST () "/" INBOX ("OLDNAME" ("inbox"))
S: a002 OK [READ-WRITE] SELECT completed
C: a003 fetch 12 full
S: * 12 FETCH (FLAGS (\Seen) INTERNALDATE "17-Jul-1996 02:44:25 -0700"
 RFC822.SIZE 4286 ENVELOPE ("Wed, 17 Jul 1996 02:23:25 -0700 (PDT)"
 "IMAP4rev2 WG mtg summary and minutes"
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 ((NIL NIL "imap" "cac.washington.edu"))
 ((NIL NIL "minutes" "CNRI.Reston.VA.US")
 ("John Klensin" NIL "KLENSIN" "MIT.EDU")) NIL NIL
 "<B27397-0100000@cac.washington.edu>")
 BODY ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 3028
 92))
S: a003 OK FETCH completed
C: a004 fetch 12 body[header]
S: * 12 FETCH (BODY[HEADER] {342}
S: Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
S: From: Terry Gray <gray@cac.washington.edu>
S: Subject: IMAP4rev2 WG mtg summary and minutes
S: To: imap@cac.washington.edu
S: cc: minutes@CNRI.Reston.VA.US, John Klensin <KLENSIN@MIT.EDU>
S: Message-Id: <B27397-0100000@cac.washington.edu>
S: MIME-Version: 1.0
S: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
S:
S:)
S: a004 OK FETCH completed
C: a005 store 12 +flags \deleted
S: * 12 FETCH (FLAGS (\Seen \Deleted))
S: a005 OK +FLAGS completed
C: a006 logout
S: * BYE IMAP4rev2 server terminating connection
S: a006 OK LOGOUT completed

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 114

9. Formal Syntax
The following syntax specification uses the Augmented Backus-Naur Form (ABNF) notation as
specified in .

In the case of alternative or optional rules in which a later rule overlaps an earlier rule, the rule
which is listed earlier take priority. For example, "\Seen" when parsed as a flag is the \Seen
flag name and not a flag-extension, even though "\Seen" can be parsed as a flag-extension. Some,
but not all, instances of this rule are noted below.

Note: rules be followed strictly; in particular:

(1) Except as noted otherwise, all alphabetic characters are case-insensitive. The use of upper
or lower case characters to define token strings is for editorial clarity only. Implementations

 accept these strings in a case-insensitive fashion.

(2) In all cases, SP refers to exactly one space. It is NOT permitted to substitute TAB, insert
additional spaces, or otherwise treat SP as being equivalent to LWSP.

[ABNF]

MUST

[ABNF] MUST

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 115

(3) The ASCII NUL character, %x00, be used anywhere, with the exception of the
OCTET production.

MUST NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 116

SP = <Defined in RFC 5234>
CTL = <Defined in RFC 5234>
CRLF = <Defined in RFC 5234>
ALPHA = <Defined in RFC 5234>
DIGIT = <Defined in RFC 5234>
DQUOTE = <Defined in RFC 5234>
OCTET = <Defined in RFC 5234>

address = "(" addr-name SP addr-adl SP addr-mailbox SP
 addr-host ")"

addr-adl = nstring
 ; Holds route from [RFC-5322] obs-route if
 ; non-NIL

addr-host = nstring
 ; NIL indicates [RFC-5322] group syntax.
 ; Otherwise, holds [RFC-5322] domain name

addr-mailbox = nstring
 ; NIL indicates end of [RFC-5322] group; if
 ; non-NIL and addr-host is NIL, holds
 ; [RFC-5322] group name.
 ; Otherwise, holds [RFC-5322] local-part
 ; after removing [RFC-5322] quoting

addr-name = nstring
 ; If non-NIL, holds phrase from [RFC-5322]
 ; mailbox after removing [RFC-5322] quoting

append = "APPEND" SP mailbox [SP flag-list] [SP date-time] SP
 literal

append-uid = uniqueid

astring = 1*ASTRING-CHAR / string

ASTRING-CHAR = ATOM-CHAR / resp-specials

atom = 1*ATOM-CHAR

ATOM-CHAR = <any CHAR except atom-specials>

atom-specials = "(" / ")" / "{" / SP / CTL / list-wildcards /
 quoted-specials / resp-specials

authenticate = "AUTHENTICATE" SP auth-type [SP initial-resp]
 *(CRLF base64)

auth-type = atom
 ; Defined by [SASL]

base64 = *(4base64-char) [base64-terminal]

base64-char = ALPHA / DIGIT / "+" / "/"
 ; Case-sensitive

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 117

base64-terminal = (2base64-char "==") / (3base64-char "=")

body = "(" (body-type-1part / body-type-mpart) ")"

body-extension = nstring / number / number64 /
 "(" body-extension *(SP body-extension) ")"
 ; Future expansion. Client implementations
 ; MUST accept body-extension fields. Server
 ; implementations MUST NOT generate
 ; body-extension fields except as defined by
 ; future standard or standards-track
 ; revisions of this specification.

body-ext-1part = body-fld-md5 [SP body-fld-dsp [SP body-fld-lang
 [SP body-fld-loc *(SP body-extension)]]]
 ; MUST NOT be returned on non-extensible
 ; "BODY" fetch

body-ext-mpart = body-fld-param [SP body-fld-dsp [SP body-fld-lang
 [SP body-fld-loc *(SP body-extension)]]]
 ; MUST NOTbe returned on non-extensible
 ; "BODY" fetch

body-fields = body-fld-param SP body-fld-id SP body-fld-desc SP
 body-fld-enc SP body-fld-octets

body-fld-desc = nstring

body-fld-dsp = "(" string SP body-fld-param ")" / nil

body-fld-enc = (DQUOTE ("7BIT" / "8BIT" / "BINARY" / "BASE64"/
 "QUOTED-PRINTABLE") DQUOTE) / string
 ; Content-Transfer-Encoding header field value.
 ; Defaults to "7BIT" (as per RFC 2045)
 ; if not present in the body part.

body-fld-id = nstring

body-fld-lang = nstring / "(" string *(SP string) ")"

body-fld-loc = nstring

body-fld-lines = number64

body-fld-md5 = nstring

body-fld-octets = number

body-fld-param = "(" string SP string *(SP string SP string) ")" / nil

body-type-1part = (body-type-basic / body-type-msg / body-type-text)
 [SP body-ext-1part]

body-type-basic = media-basic SP body-fields
 ; MESSAGE subtype MUST NOT be "RFC822" or "GLOBAL"

body-type-mpart = 1*body SP media-subtype
 [SP body-ext-mpart]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 118

 ; MULTIPART body part

body-type-msg = media-message SP body-fields SP envelope
 SP body SP body-fld-lines

body-type-text = media-text SP body-fields SP body-fld-lines

capability = ("AUTH=" auth-type) / atom
 ; New capabilities SHOULD be
 ; registered with IANA using
 ; RFC Required policy, i.e. in
 ; a standards-track, an experimental
 ; or an informational RFC.

capability-data = "CAPABILITY" *(SP capability) SP "IMAP4rev2"
 *(SP capability)
 ; Servers MUST implement the STARTTLS and LOGINDISABLED
 ; (on cleartext port), AUTH=PLAIN capabilities.
 ; Servers which offer RFC 1730 compatibility MUST
 ; list "IMAP4" as the first capability.
 ; Servers which offer RFC 3501 compatibility MUST
 ; list "IMAP4rev1" as one of capabilities.

CHAR = <defined in [ABNF]>

CHAR8 = %x01-ff
 ; any OCTET except NUL, %x00

charset = atom / quoted

childinfo-extended-item = "CHILDINFO" SP "("
 list-select-base-opt-quoted
 *(SP list-select-base-opt-quoted) ")"
 ; Extended data item (mbox-list-extended-item)
 ; returned when the RECURSIVEMATCH
 ; selection option is specified.
 ; Note 1: the CHILDINFO extended data item tag can be
 ; returned with and without surrounding quotes, as per
 ; mbox-list-extended-item-tag production.
 ; Note 2: The selection options are always returned
 ; quoted, unlike their specification in
 ; the extended LIST command.

child-mbox-flag = "\HasChildren" / "\HasNoChildren"
 ; attributes for CHILDREN return option, at most one
 ; possible per LIST response

command = tag SP (command-any / command-auth / command-nonauth /
 command-select) CRLF
 ; Modal based on state

command-any = "CAPABILITY" / "LOGOUT" / "NOOP"
 ; Valid in all states

command-auth = append / create / delete / enable / examine / list /
 Namespace-Command /
 rename / select / status / subscribe / unsubscribe /
 idle

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 119

 ; Valid only in Authenticated or Selected state

command-nonauth = login / authenticate / "STARTTLS"
 ; Valid only when in Not Authenticated state

command-select = "CLOSE" / "UNSELECT" / "EXPUNGE" / copy /
 move / fetch / store / search / uid
 ; Valid only when in Selected state

continue-req = "+" SP (resp-text / base64) CRLF

copy = "COPY" SP sequence-set SP mailbox

create = "CREATE" SP mailbox
 ; Use of INBOX gives a NO error

date = date-text / DQUOTE date-text DQUOTE

date-day = 1*2DIGIT
 ; Day of month

date-day-fixed = (SP DIGIT) / 2DIGIT
 ; Fixed-format version of date-day

date-month = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
 "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

date-text = date-day "-" date-month "-" date-year

date-year = 4DIGIT

date-time = DQUOTE date-day-fixed "-" date-month "-" date-year
 SP time SP zone DQUOTE

delete = "DELETE" SP mailbox
 ; Use of INBOX gives a NO error

digit-nz = %x31-39
 ; 1-9

eitem-standard-tag = atom
 ; a tag for LIST extended data item defined in a Standard
 ; Track or Experimental RFC.

eitem-vendor-tag = vendor-token "-" atom
 ; a vendor-specific tag for LIST extended data item

enable = "ENABLE" 1*(SP capability)

enable-data = "ENABLED" *(SP capability)

envelope = "(" env-date SP env-subject SP env-from SP
 env-sender SP env-reply-to SP env-to SP env-cc SP
 env-bcc SP env-in-reply-to SP env-message-id ")"

env-bcc = "(" 1*address ")" / nil

env-cc = "(" 1*address ")" / nil

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 120

env-date = nstring

env-from = "(" 1*address ")" / nil

env-in-reply-to = nstring

env-message-id = nstring

env-reply-to = "(" 1*address ")" / nil

env-sender = "(" 1*address ")" / nil

env-subject = nstring

env-to = "(" 1*address ")" / nil

esearch-response = "ESEARCH" [search-correlator] [SP "UID"]
 *(SP search-return-data)
 ; ESEARCH response replaces SEARCH response
 ; from IMAP4rev1.

examine = "EXAMINE" SP mailbox

fetch = "FETCH" SP sequence-set SP ("ALL" / "FULL" / "FAST" /
 fetch-att / "(" fetch-att *(SP fetch-att) ")")

fetch-att = "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
 "RFC822.SIZE" /
 "BODY" ["STRUCTURE"] / "UID" /
 "BODY" section [partial] /
 "BODY.PEEK" section [partial] /
 "BINARY" [".PEEK"] section-binary [partial] /
 "BINARY.SIZE" section-binary

flag = "\Answered" / "\Flagged" / "\Deleted" /
 "\Seen" / "\Draft" / flag-keyword / flag-extension
 ; Does not include "\Recent"

flag-extension = "\" atom
 ; Future expansion. Client implementations
 ; MUST accept flag-extension flags. Server
 ; implementations MUST NOT generate
 ; flag-extension flags except as defined by
 ; future standard or standards-track
 ; revisions of this specification.
 ; "\Recent" was defined in RFC 3501
 ; and is now deprecated.

flag-fetch = flag

flag-keyword = "$MDNSent" / "$Forwarded" / "$Junk" /
 "$NotJunk" / "$Phishing" / atom

flag-list = "(" [flag *(SP flag)] ")"

flag-perm = flag / "*"

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 121

greeting = "*" SP (resp-cond-auth / resp-cond-bye) CRLF

header-fld-name = astring

header-list = "(" header-fld-name *(SP header-fld-name) ")"

idle = "IDLE" CRLF "DONE"

initial-resp = (base64 / "=")
 ; "initial response" defined in
 ; Section 5.1 of [RFC4422]

list = "LIST" [SP list-select-opts] SP mailbox SP mbox-or-pat
 [SP list-return-opts]

list-mailbox = 1*list-char / string

list-char = ATOM-CHAR / list-wildcards / resp-specials

list-return-opt = return-option
 ; Note that return-option is the ABNF
 ; non terminal used by RFC 5258

list-return-opts = "RETURN" SP
 "(" [list-return-opt *(SP list-return-opt)] ")"
 ; list return options, e.g., CHILDREN

list-select-base-opt = "SUBSCRIBED" / option-extension
 ; options that can be used by themselves

list-select-base-opt-quoted = DQUOTE list-select-base-opt DQUOTE

list-select-independent-opt = "REMOTE" / option-extension
 ; options that do not syntactically interact with
 ; other options

list-select-mod-opt = "RECURSIVEMATCH" / option-extension
 ; options that require a list-select-base-opt
 ; to also be present

list-select-opt = list-select-base-opt / list-select-independent-opt
 / list-select-mod-opt
 ; An option registration template is described in
 ; Section 9.3 of this document.

list-select-opts = "(" [
 (*(list-select-opt SP) list-select-base-opt
 *(SP list-select-opt))
 / (list-select-independent-opt
 *(SP list-select-independent-opt))
] ")"
 ; Any number of options may be in any order.
 ; If a list-select-mod-opt appears, then a
 ; list-select-base-opt must also appear.
 ; This allows these:
 ; ()
 ; (REMOTE)

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 122

 ; (SUBSCRIBED)
 ; (SUBSCRIBED REMOTE)
 ; (SUBSCRIBED RECURSIVEMATCH)
 ; (SUBSCRIBED REMOTE RECURSIVEMATCH)
 ; But does NOT allow these:
 ; (RECURSIVEMATCH)
 ; (REMOTE RECURSIVEMATCH)

list-wildcards = "%" / "*"

literal = "{" number64 ["+"] "}" CRLF *CHAR8
 ; <number64> represents the number of CHAR8s.
 ; A non-synchronizing literal is distinguished from
 ; a synchronizing literal by presence of the "+"
 ; before the closing "}".
 ; Non synchronizing literals are not allowed when
 ; sent from server to the client.

literal8 = "~{" number64 "}" CRLF *OCTET
 ; <number64> represents the number of OCTETs
 ; in the response string.

login = "LOGIN" SP userid SP password

mailbox = "INBOX" / astring
 ; INBOX is case-insensitive. All case variants of
 ; INBOX (e.g., "iNbOx") MUST be interpreted as INBOX
 ; not as an astring. An astring which consists of
 ; the case-insensitive sequence "I" "N" "B" "O" "X"
 ; is considered to be INBOX and not an astring.
 ; Refer to section 5.1 for further
 ; semantic details of mailbox names.

mailbox-data = "FLAGS" SP flag-list / "LIST" SP mailbox-list /
 esearch-response /
 "STATUS" SP mailbox SP "(" [status-att-list] ")" /
 number SP "EXISTS" / Namespace-Response

mailbox-list = "(" [mbx-list-flags] ")" SP
 (DQUOTE QUOTED-CHAR DQUOTE / nil) SP mailbox
 [SP mbox-list-extended]
 ; This is the list information pointed to by the ABNF
 ; item "mailbox-data", which is defined in [IMAP4]

mbox-list-extended = "(" [mbox-list-extended-item
 *(SP mbox-list-extended-item)] ")"

mbox-list-extended-item = mbox-list-extended-item-tag SP
 tagged-ext-val

mbox-list-extended-item-tag = astring
 ; The content MUST conform to either "eitem-vendor-tag"
 ; or "eitem-standard-tag" ABNF productions.

mbox-or-pat = list-mailbox / patterns

mbx-list-flags = *(mbx-list-oflag SP) mbx-list-sflag
 *(SP mbx-list-oflag) /

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 123

 mbx-list-oflag *(SP mbx-list-oflag)

mbx-list-oflag = "\Noinferiors" / child-mbox-flag /
 "\Subscribed" / "\Remote" / flag-extension
 ; Other flags; multiple possible per LIST response

mbx-list-sflag = "\NonExistent" / "\Noselect" / "\Marked" / "\Unmarked"
 ; Selectability flags; only one per LIST response

media-basic = ((DQUOTE ("APPLICATION" / "AUDIO" / "IMAGE" /
 "FONT" / "MESSAGE" / "MODEL" / "VIDEO") DQUOTE)
 / string)
 SP media-subtype
 ; FONT defined in RFC 8081.
 ; MODEL defined in RFC 2077.
 ; Other top level media types
 ; are defined in [MIME-IMT].

media-message = DQUOTE "MESSAGE" DQUOTE SP
 DQUOTE ("RFC822" / "GLOBAL") DQUOTE
 ; Defined in [MIME-IMT]

media-subtype = string
 ; Defined in [MIME-IMT]

media-text = DQUOTE "TEXT" DQUOTE SP media-subtype
 ; Defined in [MIME-IMT]

message-data = nz-number SP ("EXPUNGE" / ("FETCH" SP msg-att))

move = "MOVE" SP sequence-set SP mailbox

msg-att = "(" (msg-att-dynamic / msg-att-static)
 *(SP (msg-att-dynamic / msg-att-static)) ")"

msg-att-dynamic = "FLAGS" SP "(" [flag-fetch *(SP flag-fetch)] ")"
 ; MAY change for a message

msg-att-static = "ENVELOPE" SP envelope / "INTERNALDATE" SP date-time /
 "RFC822.SIZE" SP number64 /
 "BODY" ["STRUCTURE"] SP body /
 "BODY" section ["<" number ">"] SP nstring /
 "BINARY" section-binary SP (nstring / literal8) /
 "BINARY.SIZE" section-binary SP number /
 "UID" SP uniqueid
 ; MUST NOT change for a message

name-component = 1*UTF8-CHAR
 ; MUST NOT contain ".", "/", "%", or "*"

namespace = nil / "(" 1*namespace-descr ")"

namespace-command = "NAMESPACE"

namespace-descr = "(" string SP
 (DQUOTE QUOTED-CHAR DQUOTE / nil)
 [namespace-response-extensions] ")"

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 124

namespace-response-extensions = *namespace-response-extension

namespace-response-extension = SP string SP
 "(" string *(SP string) ")"

namespace-response = "NAMESPACE" SP namespace
 SP namespace SP namespace
 ; The first Namespace is the Personal Namespace(s).
 ; The second Namespace is the Other Users'
 ; Namespace(s).
 ; The third Namespace is the Shared Namespace(s).

nil = "NIL"

nstring = string / nil

number = 1*DIGIT
 ; Unsigned 32-bit integer
 ; (0 <= n < 4,294,967,296)

number64 = 1*DIGIT
 ; Unsigned 63-bit integer
 ; (0 <= n <= 9,223,372,036,854,775,807)

nz-number = digit-nz *DIGIT
 ; Non-zero unsigned 32-bit integer
 ; (0 < n < 4,294,967,296)

nz-number64 = digit-nz *DIGIT
 ; Unsigned 63-bit integer
 ; (0 < n <= 9,223,372,036,854,775,807)

oldname-extended-item = "OLDNAME" SP "(" mailbox ")"
 ; Extended data item (mbox-list-extended-item)
 ; returned in a LIST response when a mailbox is
 ; renamed or deleted. Also returned when
 ; the server canonicalized the provided mailbox
 ; name.
 ; Note 1: the OLDNAME tag can be returned
 ; with or without surrounding quotes, as per
 ; mbox-list-extended-item-tag production.

option-extension = (option-standard-tag / option-vendor-tag)
 [SP option-value]

option-standard-tag = atom
 ; an option defined in a Standards Track or
 ; Experimental RFC

option-val-comp = astring /
 option-val-comp *(SP option-val-comp) /
 "(" option-val-comp ")"

option-value = "(" option-val-comp ")"

option-vendor-tag = vendor-token "-" atom
 ; a vendor-specific option, non-standard

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 125

partial-range = number64 ["." nz-number64]
 ; Copied from RFC 5092 (IMAP URL)
 ; and updated to support 64bit sizes.

partial = "<" number64 "." nz-number64 ">"
 ; Partial FETCH request. 0-based offset of
 ; the first octet, followed by the number of octets
 ; in the fragment.

password = astring

patterns = "(" list-mailbox ")"
 ; [RFC5258] supports multiple patterns,
 ; but this document only requires one
 ; to be supported.
 ; If the server is also implementing
 ; [RFC5258], "patterns" syntax from that
 ; document must be followed.

quoted = DQUOTE *QUOTED-CHAR DQUOTE

QUOTED-CHAR = <any TEXT-CHAR except quoted-specials> /
 "\" quoted-specials / UTF8-2 / UTF8-3 / UTF8-4

quoted-specials = DQUOTE / "\"

rename = "RENAME" SP mailbox SP mailbox
 ; Use of INBOX as a destination gives a NO error

response = *(continue-req / response-data) response-done

response-data = "*" SP (resp-cond-state / resp-cond-bye /
 mailbox-data / message-data / capability-data /
 enable-data) CRLF

response-done = response-tagged / response-fatal

response-fatal = "*" SP resp-cond-bye CRLF
 ; Server closes connection immediately

response-tagged = tag SP resp-cond-state CRLF

resp-code-apnd = "APPENDUID" SP nz-number SP append-uid

resp-code-copy = "COPYUID" SP nz-number SP uid-set SP uid-set

resp-cond-auth = ("OK" / "PREAUTH") SP resp-text
 ; Authentication condition

resp-cond-bye = "BYE" SP resp-text

resp-cond-state = ("OK" / "NO" / "BAD") SP resp-text
 ; Status condition

resp-specials = "]"

resp-text = ["[" resp-text-code "]" SP] [text]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 126

resp-text-code = "ALERT" /
 "BADCHARSET" [SP "(" charset *(SP charset) ")"] /
 capability-data / "PARSE" /
 "PERMANENTFLAGS" SP
 "(" [flag-perm *(SP flag-perm)] ")" /
 "READ-ONLY" / "READ-WRITE" / "TRYCREATE" /
 "UIDNEXT" SP nz-number / "UIDVALIDITY" SP nz-number /
 resp-code-apnd / resp-code-copy / "UIDNOTSTICKY" /
 "UNAVAILABLE" / "AUTHENTICATIONFAILED" /
 "AUTHORIZATIONFAILED" / "EXPIRED" /
 "PRIVACYREQUIRED" / "CONTACTADMIN" / "NOPERM" /
 "INUSE" / "EXPUNGEISSUED" / "CORRUPTION" /
 "SERVERBUG" / "CLIENTBUG" / "CANNOT" /
 "LIMIT" / "OVERQUOTA" / "ALREADYEXISTS" /
 "NONEXISTENT" / "NOTSAVED" / "HASCHILDREN" /
 "CLOSED" /
 "UNKNOWN-CTE" /
 atom [SP 1*<any TEXT-CHAR except "]">]

return-option = "SUBSCRIBED" / "CHILDREN" / status-option /
 option-extension

search = "SEARCH" [search-return-opts]
 SP search-program

search-correlator = SP "(" "TAG" SP tag-string ")"

search-key = "ALL" / "ANSWERED" / "BCC" SP astring /
 "BEFORE" SP date / "BODY" SP astring /
 "CC" SP astring / "DELETED" / "FLAGGED" /
 "FROM" SP astring / "KEYWORD" SP flag-keyword /
 "ON" SP date / "SEEN" /
 "SINCE" SP date / "SUBJECT" SP astring /
 "TEXT" SP astring / "TO" SP astring /
 "UNANSWERED" / "UNDELETED" / "UNFLAGGED" /
 "UNKEYWORD" SP flag-keyword / "UNSEEN" /
 ; Above this line were in [IMAP2]
 "DRAFT" / "HEADER" SP header-fld-name SP astring /
 "LARGER" SP number64 / "NOT" SP search-key /
 "OR" SP search-key SP search-key /
 "SENTBEFORE" SP date / "SENTON" SP date /
 "SENTSINCE" SP date / "SMALLER" SP number64 /
 "UID" SP sequence-set / "UNDRAFT" / sequence-set /
 "(" search-key *(SP search-key) ")"

search-modifier-name = tagged-ext-label

search-mod-params = tagged-ext-val
 ; This non-terminal shows recommended syntax
 ; for future extensions.

search-program = ["CHARSET" SP charset SP]
 search-key *(SP search-key)
 ; CHARSET argument to SEARCH MUST be
 ; registered with IANA.

search-ret-data-ext = search-modifier-name SP search-return-value

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 127

 ; Note that not every SEARCH return option
 ; is required to have the corresponding
 ; ESEARCH return data.

search-return-data = "MIN" SP nz-number /
 "MAX" SP nz-number /
 "ALL" SP sequence-set /
 "COUNT" SP number /
 search-ret-data-ext
 ; All return data items conform to
 ; search-ret-data-ext syntax.
 ; Note that "$" marker is not allowed
 ; after the ALL return data item.

search-return-opts = SP "RETURN" SP "(" [search-return-opt
 *(SP search-return-opt)] ")"

search-return-opt = "MIN" / "MAX" / "ALL" / "COUNT" /
 "SAVE" /
 search-ret-opt-ext
 ; conforms to generic search-ret-opt-ext
 ; syntax

search-ret-opt-ext = search-modifier-name [SP search-mod-params]

search-return-value = tagged-ext-val
 ; Data for the returned search option.
 ; A single "nz-number"/"number"/"number64" value
 ; can be returned as an atom (i.e., without
 ; quoting). A sequence-set can be returned
 ; as an atom as well.

section = "[" [section-spec] "]"

section-binary = "[" [section-part] "]"

section-msgtext = "HEADER" / "HEADER.FIELDS" [".NOT"] SP header-list /
 "TEXT"
 ; top-level or MESSAGE/RFC822 or MESSAGE/GLOBAL part

section-part = nz-number *("." nz-number)
 ; body part reference.
 ; Allows for accessing nested body parts.

section-spec = section-msgtext / (section-part ["." section-text])

section-text = section-msgtext / "MIME"
 ; text other than actual body part (headers, etc.)

select = "SELECT" SP mailbox

seq-number = nz-number / "*"
 ; message sequence number (COPY, FETCH, STORE
 ; commands) or unique identifier (UID COPY,
 ; UID FETCH, UID STORE commands).
 ; * represents the largest number in use. In
 ; the case of message sequence numbers, it is
 ; the number of messages in a non-empty mailbox.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 128

 ; In the case of unique identifiers, it is the
 ; unique identifier of the last message in the
 ; mailbox or, if the mailbox is empty, the
 ; mailbox's current UIDNEXT value.
 ; The server should respond with a tagged BAD
 ; response to a command that uses a message
 ; sequence number greater than the number of
 ; messages in the selected mailbox. This
 ; includes "*" if the selected mailbox is empty.

seq-range = seq-number ":" seq-number
 ; two seq-number values and all values between
 ; these two regardless of order.
 ; Example: 2:4 and 4:2 are equivalent and indicate
 ; values 2, 3, and 4.
 ; Example: a unique identifier sequence range of
 ; 3291:* includes the UID of the last message in
 ; the mailbox, even if that value is less than 3291.

sequence-set = (seq-number / seq-range) ["," sequence-set]
 ; set of seq-number values, regardless of order.
 ; Servers MAY coalesce overlaps and/or execute the
 ; sequence in any order.
 ; Example: a message sequence number set of
 ; 2,4:7,9,12:* for a mailbox with 15 messages is
 ; equivalent to 2,4,5,6,7,9,12,13,14,15
 ; Example: a message sequence number set of *:4,5:7
 ; for a mailbox with 10 messages is equivalent to
 ; 10,9,8,7,6,5,4,5,6,7 and MAY be reordered and
 ; overlap coalesced to be 4,5,6,7,8,9,10.

sequence-set =/ seq-last-command
 ; Allow for "result of the last command" indicator.

seq-last-command = "$"

status = "STATUS" SP mailbox SP
 "(" status-att *(SP status-att) ")"

status-att = "MESSAGES" / "UIDNEXT" / "UIDVALIDITY" /
 "UNSEEN" / "DELETED" / "SIZE"

status-att-val = ("MESSAGES" SP number) /
 ("UIDNEXT" SP nz-number) /
 ("UIDVALIDITY" SP nz-number) /
 ("UNSEEN" SP number) /
 ("DELETED" SP number) /
 ("SIZE" SP number64)
 ; Extensions to the STATUS responses
 ; should extend this production.
 ; Extensions should use the generic
 ; syntax defined by tagged-ext.

status-att-list = status-att-val *(SP status-att-val)

status-option = "STATUS" SP "(" status-att *(SP status-att) ")"
 ; This ABNF production complies with
 ; <option-extension> syntax.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 129

store = "STORE" SP sequence-set SP store-att-flags

store-att-flags = (["+" / "-"] "FLAGS" [".SILENT"]) SP
 (flag-list / (flag *(SP flag)))

string = quoted / literal

subscribe = "SUBSCRIBE" SP mailbox

tag = 1*<any ASTRING-CHAR except "+">

tag-string = astring
 ; <tag> represented as <astring>

tagged-ext-label = tagged-label-fchar *tagged-label-char
 ; Is a valid RFC 3501 "atom".

tagged-label-fchar = ALPHA / "-" / "_" / "."

tagged-label-char = tagged-label-fchar / DIGIT / ":"

tagged-ext-comp = astring /
 tagged-ext-comp *(SP tagged-ext-comp) /
 "(" tagged-ext-comp ")"
 ; Extensions that follow this general
 ; syntax should use nstring instead of
 ; astring when appropriate in the context
 ; of the extension.
 ; Note that a message set or a "number"
 ; can always be represented as an "atom".
 ; An URL should be represented as
 ; a "quoted" string.

tagged-ext-simple = sequence-set / number / number64

tagged-ext-val = tagged-ext-simple /
 "(" [tagged-ext-comp] ")"

text = 1*(TEXT-CHAR / UTF8-2 / UTF8-3 / UTF8-4)
 ; Non ASCII text can only be returned
 ; after ENABLE IMAP4rev2 command

TEXT-CHAR = <any CHAR except CR and LF>

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; Hours minutes seconds

uid = "UID" SP
 (copy / move / fetch / search / store / uid-expunge)
 ; Unique identifiers used instead of message
 ; sequence numbers

uid-expunge = "EXPUNGE" SP sequence-set
 ; Unique identifiers used instead of message
 ; sequence numbers

uid-set = (uniqueid / uid-range) *("," uid-set)

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 130

10. Author's Note
This document is a revision or rewrite of earlier documents, and supercedes the protocol
specification in those documents: RFC 3501, RFC 2060, RFC 1730, unpublished IMAP2bis.TXT
document, RFC 1176, and RFC 1064.

uid-range = (uniqueid ":" uniqueid)
 ; two uniqueid values and all values
 ; between these two regards of order.
 ; Example: 2:4 and 4:2 are equivalent.

uniqueid = nz-number
 ; Strictly ascending

unsubscribe = "UNSUBSCRIBE" SP mailbox

userid = astring

UTF8-CHAR = <Defined in Section 4 of RFC 3629>

UTF8-2 = <Defined in Section 4 of RFC 3629>

UTF8-3 = <Defined in Section 4 of RFC 3629>

UTF8-4 = <Defined in Section 4 of RFC 3629>

vendor-token = "vendor." name-component
 ; Definition copied from RFC 2244.
 ; MUST be registered with IANA

zone = ("+" / "-") 4DIGIT
 ; Signed four-digit value of hhmm representing
 ; hours and minutes east of Greenwich (that is,
 ; the amount that the given time differs from
 ; Universal Time). Subtracting the timezone
 ; from the given time will give the UT form.
 ; The Universal Time zone is "+0000".

11. Security Considerations
IMAP4rev2 protocol transactions, including electronic mail data, are sent in the clear over the
network exposing them to possible eavesdropping and manipulation unless protection is
negotiated. This can be accomplished either by the use of Implicit TLS port, STARTTLS command,
negotiated confidentiality protection in the AUTHENTICATE command, or some other protection
mechanism.

11.1. TLS related Security Considerations
This section applies to both use of STARTTLS command and Implicit TLS port.

IMAP client and server implementations comply with relevant TLS recommendations from
.

MUST
[RFC8314]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 131

Clients and servers implement or newer. Use of TLS 1.3 is
. TLS 1.2 may be used only in cases where the other party has not yet

implemented TLS 1.3. Additionally, when using TLS 1.2, IMAP implementations implement
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite. This is important as it assures that
any two compliant implementations can be configured to interoperate. Other TLS cipher suites
recommended in RFC 7525 are :
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 and
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. All other cipher suites are . Note that
this is a change from section 2.1 of .

The list of mandatory-to-implement TLS 1.3 cipher suites is described in Section 9.1 of .

During the TLS negotiation , the client check its understanding of the
server hostname against the server's identity as presented in the server Certificate message, in
order to prevent on-path attackers attempting to masquerade as the server. This procedure is
described in .

Both the client and server check the result of the STARTTLS command and subsequent TLS
() negotiation to see whether acceptable authentication and/or privacy was
achieved.

11.2. STARTTLS command versa use of Implicit TLS port
For maximum backward compatibility the client implement both TLS negotiation on
implicit TLS port and TLS negotiation using STARTTLS command on cleartext port.

The server implement TLS negotiation on implicit TLS port. The server also
implement IMAP on cleartext port. If the server listens on a cleartext port, it allow
STARTTLS command on it.

Some site/firewall maintainers insist on TLS site-wide and prefer not to rely on a configuration
option in each higher-level protocol. For this reason, IMAP4rev2 clients try both ports
993 and 143 (and both IPv4 and IPv6) concurrently by default, unless overridden by either user
configuration or DNS SRV records . A good algorithm for implementing such
concurrent connect is described in .

11.3. Client handling of unsolicited responses not suitable for the current
connection state
Cleartext mail transmission (whether caused by firewall configuration errors that result in TLS
stripping or weak security policies in email clients that choose not to negotiate TLS in the first
place) can enable injection of responses that can confuse or even cause crashes in email clients.
The following measures are recommended to minimize damage from them.

See Section 7.1.4 for special security considerations related to PREAUTH response.

Many server responses and response codes are only meaningful in authenticated or even
selected state. However, nothing prevents a server (or an on-path attacker) from sending

MUST TLS 1.2 [TLS-1.2] [TLS-1.3]
RECOMMENDED

MUST

[RFC7525] RECOMMENDED

OPTIONAL
[IMAP-TLS]

[TLS-1.3]

[TLS-1.3][TLS-1.2] MUST

[RFC7817]

MUST
[TLS-1.3][TLS-1.2]

MUST

MUST SHOULD
MUST

SHOULD

[RFC6186]
[RFC8305]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 132

such invalid responses in cleartext before STARTTLS/AUTHENTICATE commands are issued.
Before authentication clients ignore any responses other than CAPABILITY and
server status responses (Section 7.1), as well as any response codes other than CAPABILITY.
(In particular, some email clients are known to incorrectly process LIST responses received
before authentication.) Clients ignore the ALERT response code until after TLS
(whether using STARTTLS or TLS negotiation on implicit TLS port) or SASL security layer
with confidentiality protection has been successfully negotiated. Unless explicitly allowed by
an IMAP extension, when not in selected state clients ignore responses/response codes
related to message and mailbox status such as FLAGS, EXIST, EXPUNGE and FETCH.

11.4. COPYUID and APPENDUID response codes
The COPYUID and APPENDUID response codes return information about the mailbox, which may
be considered sensitive if the mailbox has permissions set that permit the client to COPY or
APPEND to the mailbox, but not SELECT or EXAMINE it.

Consequently, these response codes be issued if the client does not have access to
SELECT or EXAMINE the mailbox.

11.5. LIST command and Other Users' namespace
In response to a LIST command containing an argument of the Other Users' Namespace prefix, a
server list users that have not granted list access to their personal mailboxes to the
currently authenticated user. Providing such a list, could compromise security by potentially
disclosing confidential information of who is located on the server, or providing a starting point
of a list of user accounts to attack.

11.6. Use of MD5
The BODYSTRUCTURE FETCH Data item can contain a the MD5 digest of the message body in the
"body MD5" field (body-fld-md5 ABNF production). While MD5 is no longer considered a secure
cryptographic hash , this field is used solely to expose the value of the Content-MD5
header field (if present in the original message), which is just a message integrity check and is
not used for cryptographic purposes. Also note that other mechanisms that provide message
integrity checks were defined since RFC 1864 was published and are now more commonly used
than Content-MD5. Two such mechanisms are DKIM-Signature header field and S/
MIME signing .

11.7. Other Security Considerations
A server error message for an AUTHENTICATE command which fails due to invalid credentials

 detail why the credentials are invalid.

Use of the LOGIN command sends passwords in the clear. This can be avoided by using the
AUTHENTICATE command with a mechanism that does not use plaintext passwords, by
first negotiating encryption via STARTTLS or some other protection mechanism.

SHOULD

SHOULD

MUST

SHOULD NOT

SHOULD NOT

[RFC6151]

[RFC6376]
[RFC8550][RFC8550]

SHOULD NOT

[SASL]

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 133

12. IANA Considerations
IANA is requested to update "Service Names and Transport Protocol Port Numbers" registry as
follows:

Registration for TCP port 143 and the corresponding "imap" service name should be updated
to point to this document and RFC 3501.
Registration for TCP port 993 and the corresponding "imaps" service name should be
updated to point to this document, RFC 8314 and RFC 3501.
Both UDP port 143 and UDP port 993 should be marked as "Reserved" in the registry.

Additional IANA actions are specified in subsection of this section.

12.1. Updates to IMAP4 Capabilities registry
IMAP4 capabilities are registered by publishing a standards track or IESG approved
informational or experimental RFC. The registry is currently located at: https://www.iana.org/
assignments/imap4-capabilities

As this specification revises the AUTH= prefix, STARTTLS and LOGINDISABLED extensions, IANA
is requested to update registry entries for these 3 extensions to point to this document and RFC
3501.

A server implementation implement a configuration that, at the time of authentication,
requires: (1) The STARTTLS command has been negotiated or TLS negotiated on implicit TLS
port. OR (2) Some other mechanism that protects the session from password snooping has been
provided. OR (3) The following measures are in place: (a) The LOGINDISABLED capability is
advertised, and AND (b) The LOGIN command returns an error even if the password is
correct. AND (c) The AUTHENTICATE command returns an error with all mechanisms
(such as PLAIN) using plaintext passwords are NOT advertised in the CAPABILITY list.
mechanisms that use plaintext passwords, even if the password is correct.

A server error message for a failing LOGIN command specify that the user name, as
opposed to the password, is invalid.

A server have mechanisms in place to limit or delay failed AUTHENTICATE/LOGIN
attempts.

A server report any authentication failure and analyze such authentication failure
attempt with regard to a password brute force attack as well as a password spraying attack.
Accounts with passwords that match well known passwords from spraying attacks be
blocked and users associated with such accounts must be requested to change their passwords.
Only password with significant strength be accepted.

Additional security considerations are discussed in the section discussing the AUTHENTICATE
(see Section 6.2.2) and LOGIN (see Section 6.2.3) commands.

MUST

[SASL]
[SASL]

SHOULD NOT

SHOULD

SHOULD

MUST

SHOULD

1.

2.

3.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 134

[RFC4752]

[RFC5258]

[RFC5788]

12.2. GSSAPI/SASL service name
GSSAPI/Kerberos/SASL service names are registered by publishing a standards track or IESG
approved experimental RFC. The registry is currently located at: https://www.iana.org/
assignments/gssapi-service-names

IANA is requested to update the "imap" service name previously registered in RFC 3501, to point
to both this document and RFC 3501.

12.3. LIST Selection Options, LIST Return Options, LIST extended data
items

 specifies IANA registration procedures for LIST Selection Options, LIST Return
Options, LIST extended data items. This document doesn't change these registration procedures.
In particular LIST selection options (Section 6.3.9.1) and LIST return options (Section 6.3.9.2) are
registered using the procedure specified in Section 9 of (and using the registration
template from Section 9.3 of). LIST Extended Data Items are registered using the
registration template from Section 9.6 of).

IANA is requested to add a reference to [RFCXXXX] for the "OLDNAME" LIST-EXTENDED
extended data item entry. This is in addition to the existing reference to .

12.4. IMAP Mailbox Name Attributes and IMAP Response Codes
IANA is requested to update the "IMAP Mailbox Name Attributes" registry to point to this
document in addition to RFC 3501.

IANA is requested to update the "IMAP Response Codes" registry to point to this document in
addition to RFC 3501.

13. References

13.1. Normative References

,
, , , November

2006, .

,
, , , June 2008,

.

, , ,
, March 2010, .

[RFC5258]

[RFC5258]
[RFC5258]

[RFC5258]

[RFC5465]

Melnikov, A., Ed. "The Kerberos V5 ("GSSAPI") Simple Authentication and
Security Layer (SASL) Mechanism" RFC 4752 DOI 10.17487/RFC4752

<https://www.rfc-editor.org/info/rfc4752>

Leiba, B. and A. Melnikov "Internet Message Access Protocol version 4 - LIST
Command Extensions" RFC 5258 DOI 10.17487/RFC5258 <https://
www.rfc-editor.org/info/rfc5258>

Melnikov, A. and D. Cridland "IMAP4 Keyword Registry" RFC 5788 DOI
10.17487/RFC5788 <https://www.rfc-editor.org/info/rfc5788>

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 135

https://www.rfc-editor.org/info/rfc4752
https://www.rfc-editor.org/info/rfc5258
https://www.rfc-editor.org/info/rfc5258
https://www.rfc-editor.org/info/rfc5788

[ABNF]

[CHARSET]

[SCRAM-SHA-256]

[DISPOSITION]

[PLAIN]

[RFC2119]

[RFC8174]

[LANGUAGE-TAGS]

[LOCATION]

[MD5]

[MIME-HDRS]

[MIME-IMB]

[MIME-IMT]

,
, , , , January 2008,

.

, , ,
, , October 2000,

.

,
, ,

, November 2015, .

,
,

, , August 1997,
.

,
, , , August 2006,

.

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

, , ,
, May 2002, .

,
, , , March

1999, .

, , ,
, October 1995, .

,
, , ,

November 1996, .

,
, , ,

November 1996, .

,
, , , November 1996,

.

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Freed, N. and J. Postel "IANA Charset Registration Procedures" BCP 19 RFC
2978 DOI 10.17487/RFC2978 <https://www.rfc-editor.org/info/
rfc2978>

Hansen, T. "SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple
Authentication and Security Layer (SASL) Mechanisms" RFC 7677 DOI 10.17487/
RFC7677 <https://www.rfc-editor.org/info/rfc7677>

Troost, R., Dorner, S., and K. Moore, Ed. "Communicating Presentation
Information in Internet Messages: The Content-Disposition Header Field" RFC
2183 DOI 10.17487/RFC2183 <https://www.rfc-editor.org/info/
rfc2183>

Zeilenga, K., Ed. "The PLAIN Simple Authentication and Security Layer (SASL)
Mechanism" RFC 4616 DOI 10.17487/RFC4616 <https://www.rfc-
editor.org/info/rfc4616>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Alvestrand, H. "Content Language Headers" RFC 3282 DOI 10.17487/
RFC3282 <https://www.rfc-editor.org/info/rfc3282>

Palme, J., Hopmann, A., and N. Shelness "MIME Encapsulation of Aggregate
Documents, such as HTML (MHTML)" RFC 2557 DOI 10.17487/RFC2557

<https://www.rfc-editor.org/info/rfc2557>

Myers, J. and M. Rose "The Content-MD5 Header Field" RFC 1864 DOI 10.17487/
RFC1864 <https://www.rfc-editor.org/info/rfc1864>

Moore, K. "MIME (Multipurpose Internet Mail Extensions) Part Three: Message
Header Extensions for Non-ASCII Text" RFC 2047 DOI 10.17487/RFC2047

<https://www.rfc-editor.org/info/rfc2047>

Freed, N. and N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies" RFC 2045 DOI 10.17487/RFC2045

<https://www.rfc-editor.org/info/rfc2045>

Freed, N. and N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 136

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc2978
https://www.rfc-editor.org/info/rfc2978
https://www.rfc-editor.org/info/rfc7677
https://www.rfc-editor.org/info/rfc2183
https://www.rfc-editor.org/info/rfc2183
https://www.rfc-editor.org/info/rfc4616
https://www.rfc-editor.org/info/rfc4616
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc3282
https://www.rfc-editor.org/info/rfc2557
https://www.rfc-editor.org/info/rfc1864
https://www.rfc-editor.org/info/rfc2047
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2046

[RFC2231]

[RFC-5322]

[SASL]

[TLS-1.2]

[TLS-1.3]

[UTF-7]

[UTF-8]

[MULTIAPPEND]

[NET-UNICODE]

[I18N-HDRS]

[RFC3503]

[RFC4648]

[RFC7525]

,
, ,

, November 1997, .

, , , ,
October 2008, .

,
, , , June 2006,

.

,
, , , August 2008,

.

, , ,
, August 2018, .

,
, , , May 1997,

.

, , , ,
, November 2003,

.

,
, , , March 2003,

.

, ,
, , March 2008,

.

, , ,
, February 2012,

.

,
, , , March 2003,

.

, , ,
, October 2006, .

,
,

, , , May 2015,
.

Freed, N. and K. Moore "MIME Parameter Value and Encoded Word Extensions:
Character Sets, Languages, and Continuations" RFC 2231 DOI 10.17487/
RFC2231 <https://www.rfc-editor.org/info/rfc2231>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322
<https://www.rfc-editor.org/info/rfc5322>

Melnikov, A., Ed. and K. Zeilenga, Ed. "Simple Authentication and Security Layer
(SASL)" RFC 4422 DOI 10.17487/RFC4422 <https://www.rfc-
editor.org/info/rfc4422>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Goldsmith, D. and M. Davis "UTF-7 A Mail-Safe Transformation Format of
Unicode" RFC 2152 DOI 10.17487/RFC2152 <https://www.rfc-
editor.org/info/rfc2152>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Crispin, M. "Internet Message Access Protocol (IMAP) - MULTIAPPEND
Extension" RFC 3502 DOI 10.17487/RFC3502 <https://www.rfc-
editor.org/info/rfc3502>

Klensin, J. and M. Padlipsky "Unicode Format for Network Interchange" RFC
5198 DOI 10.17487/RFC5198 <https://www.rfc-editor.org/info/
rfc5198>

Yang, A., Steele, S., and N. Freed "Internationalized Email Headers" RFC 6532
DOI 10.17487/RFC6532 <https://www.rfc-editor.org/info/
rfc6532>

Melnikov, A. "Message Disposition Notification (MDN) profile for Internet
Message Access Protocol (IMAP)" RFC 3503 DOI 10.17487/RFC3503
<https://www.rfc-editor.org/info/rfc3503>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 137

https://www.rfc-editor.org/info/rfc2231
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc2152
https://www.rfc-editor.org/info/rfc2152
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3502
https://www.rfc-editor.org/info/rfc3502
https://www.rfc-editor.org/info/rfc5198
https://www.rfc-editor.org/info/rfc5198
https://www.rfc-editor.org/info/rfc6532
https://www.rfc-editor.org/info/rfc6532
https://www.rfc-editor.org/info/rfc3503
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525

[RFC7817]

[RFC8098]

[RFC8314]

[IMAP-IMPLEMENTATION]

[IMAP-MULTIACCESS]

[CERT-555316]

[RFC6151]

[RFC2193]

[RFC3348]

[RFC5256]

[RFC5465]

[RFC6186]

,
, , , March

2016, .

, , ,
, , February 2017,

.

,
, ,

, January 2018, .

, , ,
, September 1999,

.

, , ,
, July 1997, .

13.2. Informative References (related protocols)

,
, September 2011, .

,
, , , March

2011, .

, , , ,
September 1997, .

,
, , , July 2002,

.

,
, , , June 2008,

.

, ,
, , February 2009,

.

, ,
, , March 2011,
.

Melnikov, A. "Updated Transport Layer Security (TLS) Server Identity Check
Procedure for Email-Related Protocols" RFC 7817 DOI 10.17487/RFC7817

<https://www.rfc-editor.org/info/rfc7817>

Hansen, T., Ed. and A. Melnikov, Ed. "Message Disposition Notification" STD 85
RFC 8098 DOI 10.17487/RFC8098 <https://www.rfc-editor.org/
info/rfc8098>

Moore, K. and C. Newman "Cleartext Considered Obsolete: Use of Transport
Layer Security (TLS) for Email Submission and Access" RFC 8314 DOI 10.17487/
RFC8314 <https://www.rfc-editor.org/info/rfc8314>

Leiba, B. "IMAP4 Implementation Recommendations" RFC 2683
DOI 10.17487/RFC2683 <https://www.rfc-editor.org/info/
rfc2683>

Gahrns, M. "IMAP4 Multi-Accessed Mailbox Practice" RFC 2180 DOI
10.17487/RFC2180 <https://www.rfc-editor.org/info/rfc2180>

CERT "Vulnerability Note VU#555316: STARTTLS plaintext command injection
vulnerability" <https://www.kb.cert.org/vuls/id/555316>

Turner, S. and L. Chen "Updated Security Considerations for the MD5 Message-
Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Gahrns, M. "IMAP4 Mailbox Referrals" RFC 2193 DOI 10.17487/RFC2193
<https://www.rfc-editor.org/info/rfc2193>

Gahrns, M. and R. Cheng "The Internet Message Action Protocol (IMAP4) Child
Mailbox Extension" RFC 3348 DOI 10.17487/RFC3348 <https://
www.rfc-editor.org/info/rfc3348>

Crispin, M. and K. Murchison "Internet Message Access Protocol - SORT and
THREAD Extensions" RFC 5256 DOI 10.17487/RFC5256 <https://
www.rfc-editor.org/info/rfc5256>

Gulbrandsen, A., King, C., and A. Melnikov "The IMAP NOTIFY Extension" RFC
5465 DOI 10.17487/RFC5465 <https://www.rfc-editor.org/info/
rfc5465>

Daboo, C. "Use of SRV Records for Locating Email Submission/Access Services"
RFC 6186 DOI 10.17487/RFC6186 <https://www.rfc-editor.org/info/
rfc6186>

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 138

https://www.rfc-editor.org/info/rfc7817
https://www.rfc-editor.org/info/rfc8098
https://www.rfc-editor.org/info/rfc8098
https://www.rfc-editor.org/info/rfc8314
https://www.rfc-editor.org/info/rfc2683
https://www.rfc-editor.org/info/rfc2683
https://www.rfc-editor.org/info/rfc2180
https://www.kb.cert.org/vuls/id/555316
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc2193
https://www.rfc-editor.org/info/rfc3348
https://www.rfc-editor.org/info/rfc3348
https://www.rfc-editor.org/info/rfc5256
https://www.rfc-editor.org/info/rfc5256
https://www.rfc-editor.org/info/rfc5465
https://www.rfc-editor.org/info/rfc5465
https://www.rfc-editor.org/info/rfc6186
https://www.rfc-editor.org/info/rfc6186

[RFC7162]

[RFC7888]

[RFC8474]

[IMAP-DISC]

[IMAP-I18N]

[IMAP-MODEL]

[IMAP-UTF-8]

[ANONYMOUS]

[SMTP]

[RFC3516]

[RFC4314]

[RFC2087]

[IMAP-URL]

[RFC8305]

,

, , , May 2014,
.

, , ,
, May 2016, .

, , ,
, September 2018, .

, ,
, , June 2006,
.

,
, , , June 2008,

.

, , ,
, December 1994, .

, ,
, , March 2013,

.

,
, , , June 2006,

.

, , , ,
October 2008, .

, , ,
, April 2003, .

, , ,
, December 2005, .

, , , , January
1997, .

, , ,
, November 2007, .

,
, , , December 2017,

.

Melnikov, A. and D. Cridland "IMAP Extensions: Quick Flag Changes
Resynchronization (CONDSTORE) and Quick Mailbox Resynchronization
(QRESYNC)" RFC 7162 DOI 10.17487/RFC7162 <https://www.rfc-
editor.org/info/rfc7162>

Melnikov, A., Ed. "IMAP4 Non-synchronizing Literals" RFC 7888 DOI 10.17487/
RFC7888 <https://www.rfc-editor.org/info/rfc7888>

Gondwana, B., Ed. "IMAP Extension for Object Identifiers" RFC 8474 DOI
10.17487/RFC8474 <https://www.rfc-editor.org/info/rfc8474>

Melnikov, A., Ed. "Synchronization Operations for Disconnected IMAP4 Clients"
RFC 4549 DOI 10.17487/RFC4549 <https://www.rfc-editor.org/info/
rfc4549>

Newman, C., Gulbrandsen, A., and A. Melnikov "Internet Message Access
Protocol Internationalization" RFC 5255 DOI 10.17487/RFC5255
<https://www.rfc-editor.org/info/rfc5255>

Crispin, M. "Distributed Electronic Mail Models in IMAP4" RFC 1733 DOI
10.17487/RFC1733 <https://www.rfc-editor.org/info/rfc1733>

Resnick, P., Ed., Newman, C., Ed., and S. Shen, Ed. "IMAP Support for UTF-8" RFC
6855 DOI 10.17487/RFC6855 <https://www.rfc-editor.org/info/
rfc6855>

Zeilenga, K. "Anonymous Simple Authentication and Security Layer (SASL)
Mechanism" RFC 4505 DOI 10.17487/RFC4505 <https://www.rfc-
editor.org/info/rfc4505>

Klensin, J. "Simple Mail Transfer Protocol" RFC 5321 DOI 10.17487/RFC5321
<https://www.rfc-editor.org/info/rfc5321>

Nerenberg, L. "IMAP4 Binary Content Extension" RFC 3516 DOI 10.17487/
RFC3516 <https://www.rfc-editor.org/info/rfc3516>

Melnikov, A. "IMAP4 Access Control List (ACL) Extension" RFC 4314 DOI
10.17487/RFC4314 <https://www.rfc-editor.org/info/rfc4314>

Myers, J. "IMAP4 QUOTA extension" RFC 2087 DOI 10.17487/RFC2087
<https://www.rfc-editor.org/info/rfc2087>

Melnikov, A., Ed. and C. Newman "IMAP URL Scheme" RFC 5092 DOI 10.17487/
RFC5092 <https://www.rfc-editor.org/info/rfc5092>

Schinazi, D. and T. Pauly "Happy Eyeballs Version 2: Better Connectivity Using
Concurrency" RFC 8305 DOI 10.17487/RFC8305 <https://
www.rfc-editor.org/info/rfc8305>

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 139

https://www.rfc-editor.org/info/rfc7162
https://www.rfc-editor.org/info/rfc7162
https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc8474
https://www.rfc-editor.org/info/rfc4549
https://www.rfc-editor.org/info/rfc4549
https://www.rfc-editor.org/info/rfc5255
https://www.rfc-editor.org/info/rfc1733
https://www.rfc-editor.org/info/rfc6855
https://www.rfc-editor.org/info/rfc6855
https://www.rfc-editor.org/info/rfc4505
https://www.rfc-editor.org/info/rfc4505
https://www.rfc-editor.org/info/rfc5321
https://www.rfc-editor.org/info/rfc3516
https://www.rfc-editor.org/info/rfc4314
https://www.rfc-editor.org/info/rfc2087
https://www.rfc-editor.org/info/rfc5092
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305

[RFC6376]

[RFC8550]

[RFC8551]

[IMAP-KEYWORDS-REG]

[IMAP-MAILBOX-NAME-ATTRS-REG]

[CHARSET-REG]

[RFC3501]

[IMAP-COMPAT]

[IMAP-HISTORICAL]

[IMAP2BIS]

[IMAP-OBSOLETE]

[IMAP2]

[RFC-822]

,
, , , , September

2011, .

,
, ,

, April 2019, .

,
, ,

, April 2019, .

, , December 2009,
.

, , June 2018,

.

, , May 2015,
.

13.3. Informative References (historical aspects of IMAP and related
protocols)

, ,
, , March 2003,

.

, , ,
, December 1996, .

, , ,
, December 1994,

.

, ,
, , 29 October 1993,

.

, , ,
, December 1996,

.

, , ,
, August 1990, .

,
, , , , August 1982,

.

Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed. "DomainKeys Identified
Mail (DKIM) Signatures" STD 76 RFC 6376 DOI 10.17487/RFC6376

<https://www.rfc-editor.org/info/rfc6376>

Schaad, J., Ramsdell, B., and S. Turner "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 Certificate Handling" RFC 8550 DOI 10.17487/
RFC8550 <https://www.rfc-editor.org/info/rfc8550>

Schaad, J., Ramsdell, B., and S. Turner "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 Message Specification" RFC 8551 DOI 10.17487/
RFC8551 <https://www.rfc-editor.org/info/rfc8551>

IANA "IMAP and JMAP Keywords" <https://
www.iana.org/assignments/imap-jmap-keywords/imap-jmap-keywords.xhtml>

IANA "IMAP Mailbox Name Attributes"
<https://www.iana.org/assignments/imap-mailbox-name-attributes/imap-
mailbox-name-attributes.xhtml>

IANA "Character Set Registrations" <https://www.iana.org/
assignments/charset-reg/charset-reg.xhtml>

Crispin, M. "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1" RFC
3501 DOI 10.17487/RFC3501 <https://www.rfc-editor.org/info/
rfc3501>

Crispin, M. "IMAP4 Compatibility with IMAP2bis" RFC 2061 DOI 10.17487/
RFC2061 <https://www.rfc-editor.org/info/rfc2061>

Crispin, M. "IMAP4 Compatibility with IMAP2 and IMAP2bis" RFC 1732
DOI 10.17487/RFC1732 <https://www.rfc-editor.org/info/
rfc1732>

Crispin, M. "INTERACTIVE MAIL ACCESS PROTOCOL - VERSION 2bis" Work in
Progress Internet-Draft, draft-ietf-imap-imap2bis-02 <https://
tools.ietf.org/html/draft-ietf-imap-imap2bis-02>

Crispin, M. "Internet Message Access Protocol - Obsolete Syntax" RFC 2062
DOI 10.17487/RFC2062 <https://www.rfc-editor.org/info/
rfc2062>

Crispin, M. "Interactive Mail Access Protocol: Version 2" RFC 1176 DOI
10.17487/RFC1176 <https://www.rfc-editor.org/info/rfc1176>

Crocker, D. "STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT
MESSAGES" STD 11 RFC 822 DOI 10.17487/RFC0822 <https://
www.rfc-editor.org/info/rfc822>

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 140

https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc8550
https://www.rfc-editor.org/info/rfc8551
https://www.iana.org/assignments/imap-jmap-keywords/imap-jmap-keywords.xhtml
https://www.iana.org/assignments/imap-jmap-keywords/imap-jmap-keywords.xhtml
https://www.iana.org/assignments/imap-mailbox-name-attributes/imap-mailbox-name-attributes.xhtml
https://www.iana.org/assignments/imap-mailbox-name-attributes/imap-mailbox-name-attributes.xhtml
https://www.iana.org/assignments/charset-reg/charset-reg.xhtml
https://www.iana.org/assignments/charset-reg/charset-reg.xhtml
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc2061
https://www.rfc-editor.org/info/rfc1732
https://www.rfc-editor.org/info/rfc1732
https://tools.ietf.org/html/draft-ietf-imap-imap2bis-02
https://tools.ietf.org/html/draft-ietf-imap-imap2bis-02
https://www.rfc-editor.org/info/rfc2062
https://www.rfc-editor.org/info/rfc2062
https://www.rfc-editor.org/info/rfc1176
https://www.rfc-editor.org/info/rfc822
https://www.rfc-editor.org/info/rfc822

[IMAP-TLS] , , ,
, June 1999, .

Newman, C. "Using TLS with IMAP, POP3 and ACAP" RFC 2595 DOI 10.17487/
RFC2595 <https://www.rfc-editor.org/info/rfc2595>

Appendix A. Backward compatibility with IMAP4rev1
An implementation that wants to remain compatible with IMAP4rev1 can advertise both
IMAP4rev1 and IMAP4rev2 in its CAPABILITY response/response code. (Such server
implementation is likely to also want to advertise other IMAP4rev1 extensions that were folded
into IMAP4rev2. See Appendix E.) While some IMAP4rev1 responses were removed in
IMAP4rev2, their presence will not break IMAP4rev2-only clients.

If both IMAP4rev1 and IMAP4rev2 are advertised, an IMAP client that wants to use IMAP4rev2
 issue an "ENABLE IMAP4rev2" command.

Servers advertising both IMAP4rev1 and IMAP4rev2 generate UTF-8 quoted strings
unless the client has issued "ENABLE IMAP4rev2". Consider implementation of mechanisms
described or referenced in to achieve this goal.

Servers advertising both IMAP4rev1 and IMAP4rev2, and clients intending to be compatible with
IMAP4rev1 servers be compatible with the international mailbox naming convention
described in Appendix A.1.

Also see Appendix D for special considerations for servers that support 63 bit body part/message
sizes and want to advertise support for both IMAP4rev1 and IMAP4rev2.

MUST

MUST NOT

[IMAP-UTF-8]

MUST

A.1. Mailbox International Naming Convention for
compatibility with IMAP4rev1
Support for the Mailbox International Naming Convention described in this section is not
required for IMAP4rev2-only clients and servers. It is only used for backward compatibility with
IMAP4rev1 implementations.

By convention, international mailbox names in IMAP4rev1 are specified using a modified
version of the UTF-7 encoding described in . Modified UTF-7 may also be usable in servers
that implement an earlier version of this protocol.

In modified UTF-7, printable US-ASCII characters, except for "&", represent themselves; that is,
characters with octet values 0x20-0x25 and 0x27-0x7e. The character "&" (0x26) is represented by
the two-octet sequence "&-".

All other characters (octet values 0x00-0x1f and 0x7f-0xff) are represented in modified BASE64,
with a further modification from that "," is used instead of "/". Modified BASE64

 be used to represent any printing US-ASCII character which can represent itself. Only
characters inside the modified BASE64 alphabet are permitted in modified BASE64 text.

[UTF-7]

[UTF-7] MUST
NOT

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 141

https://www.rfc-editor.org/info/rfc2595

"&" is used to shift to modified BASE64 and "-" to shift back to US-ASCII. There is no implicit shift
from BASE64 to US-ASCII, and null shifts ("-&" while in BASE64; note that "&-" while in US-ASCII
means "&") are not permitted. However, all names start in US-ASCII, and end in US-ASCII;
that is, a name that ends with a non-ASCII ISO-10646 character end with a "-").

The purpose of these modifications is to correct the following problems with UTF-7:

UTF-7 uses the "+" character for shifting; this conflicts with the common use of "+" in mailbox
names, in particular USENET newsgroup names.
UTF-7's encoding is BASE64 which uses the "/" character; this conflicts with the use of "/" as a
popular hierarchy delimiter.
UTF-7 prohibits the unencoded usage of "\"; this conflicts with the use of "\" as a popular
hierarchy delimiter.
UTF-7 prohibits the unencoded usage of "~"; this conflicts with the use of "~" in some servers
as a home directory indicator.
UTF-7 permits multiple alternate forms to represent the same string; in particular, printable
US-ASCII characters can be represented in encoded form.

Although modified UTF-7 is a convention, it establishes certain requirements on server handling
of any mailbox name with an embedded "&" character. In particular, server implementations

 preserve the exact form of the modified BASE64 portion of a modified UTF-7 name and
treat that text as case-sensitive, even if names are otherwise case-insensitive or case-folded.

Server implementations verify that any mailbox name with an embedded "&" character,
used as an argument to CREATE, is: in the correctly modified UTF-7 syntax, has no superfluous
shifts, and has no encoding in modified BASE64 of any printing US-ASCII character which can
represent itself. However, client implementations depend upon the server doing this,
and attempt to create a mailbox name with an embedded "&" character unless it
complies with the modified UTF-7 syntax.

Server implementations which export a mail store that does not follow the modified UTF-7
convention convert to modified UTF-7 any mailbox name that contains either non-ASCII
characters or the "&" character.

For example, here is a mailbox name which mixes English, Chinese, and Japanese text:
~peter/mail/&U,BTFw-/&ZeVnLIqe-

For example, the string "&Jjo!" is not a valid mailbox name because it does not contain a shift
to US-ASCII before the "!". The correct form is "&Jjo-!". The string "&U,BTFw-&ZeVnLIqe-" is
not permitted because it contains a superfluous shift. The correct form is
"&U,BTF2XlZyyKng-".

MUST
MUST

1.

2.

3.

4.

5.

MUST

SHOULD

MUST NOT
SHOULD NOT

MUST

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 142

Appendix B. Backward compatibility with BINARY extension
IMAP4rev2 incorporates subset of functionality provided by the BINARY extension , in
particular it includes additional FETCH items (BINARY, BINARY.PEEK and BINARY.SIZE), but not
extensions to the APPEND command. IMAP4rev2 implementations that supports full RFC 3516
functionality need to also advertise the BINARY capability in the CAPABILITY response/response
code.

[RFC3516]

Appendix C. Backward compatibility with LIST-EXTENDED
extension
IMAP4rev2 incorporates most of functionality provided by the LIST-EXTENDED extension

. In particular, multiple mailbox patterns syntax is not supported in IMAP4rev2, unless
LIST-EXTENDED capability is also advertised in the CAPABILITY response/response code.
[RFC5258]

Appendix D. 63 bit body part and message sizes
IMAP4rev2 increases allowed body part and message sizes that servers can support from 32 to 63
bits. Server implementations don't have to support 63 bit long body parts/message sizes, however
client implementations have to expect them.

As IMAP4rev1 didn't support 63 bit long body part/message sizes, there is an interoperability
issue exposed by 63 bit capable servers that are accessible by both IMAP4rev1 and IMAP4rev2
email clients. As IMAP4rev1 would be unable to retrieve full content of messages bigger than
4Gb, such servers either need to replace messages bigger that 4Gb with messages under 4Gb or
hide them from IMAP4rev1 clients. This document doesn't prescribe any implementation
strategy to address this issue.

Appendix E. Changes from RFC 3501 / IMAP4rev1
Below is the summary of changes since RFC 3501:

Support for 64bit message and body part sizes.
Folded in IMAP NAMESPACE (RFC 2342), UNSELECT (RFC 3691), UIDPLUS (RFC 4315),
ESEARCH (RFC 4731), SEARCHRES (RFC 5182), ENABLE (RFC 5161), IDLE (RFC 2177), SASL-IR
(RFC 4959), LIST-EXTENDED (RFC 5258), LIST-STATUS (RFC 5819), MOVE (RFC 6851) and
LITERAL- (RFC 7888) extensions. Also folded RFC 4466 (IMAP ABNF extensions), RFC 5530
(response codes), the FETCH side of the BINARY extension (RFC 3516) and the list of new
mailbox attributes from SPECIAL-USE (RFC 6154).
Added STATUS SIZE (RFC 8438) and STATUS DELETED.
SEARCH command now requires to return ESEARCH response (SEARCH response is now
deprecated).
Clarified which SEARCH keys have to use substring match and which don't.

1.
2.

3.
4.

5.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 143

Clarified that server should decode parameter value continuations as described in
. This requirement was hidden in RFC 2231 itself.

Clarified that COPYUID response code is returned for both MOVE and UID MOVE.
Tighen requirements about COPY/MOVE commands not creating target mailbox. Also require
them to return TRYCREATE response code, if the target mailbox doesn't exist and can be
created.
Added CLOSED response code from RFC 7162. SELECT/EXAMINE when a mailbox is already
selected now requires a CLOSED response code to be returned.
SELECT/EXAMINE are now required to return untagged LIST response.
UNSEEN response code on SELECT/EXAMINE is now deprecated.
RECENT response on SELECT/EXAMINE, \Recent flag, RECENT STATUS, SEARCH NEW items
are now deprecated.
Clarified that the server doesn't need to send a new PERMANENTFLAGS response code when
a new keyword was successfully added and the server advertised * earlier for the same
mailbox.
For future extensibility extended ABNF for tagged-ext-simple to allow for bare number64.
Added level requirement on IMAP servers to support $MDNSent, $Forwarded,
$Junk, $NonJunk and $Phishing keywords.
Mailbox names and message headers now allow for UTF-8. Support for Modified UTF-7 in
mailbox names is not required, unless compatibility with IMAP4rev1 is desired.
Removed the CHECK command. Clients should use NOOP instead.
RFC822, RFC822.HEADER and RFC822.TEXT FETCH data items were deprecated. Clients
should use the corresponding BODY[] variants instead.
LSUB command was deprecated. Clients should use LIST (SUBSCRIBED) instead.
IDLE command can now return updates not related to the currently selected mailbox state.
All unsolicited FETCH updates are required to include UID.
Clarified that client implementations ignore response codes that they do not recognize.
(Change from a to a .)
resp-text ABNF non terminal was updated to allow for empty text.
After ENABLE IMAP4rev2 human readable response text can include non ASCII encoded in
UTF-8.
Updated to use modern TLS-related recommendations as per RFC 8314, RFC 7817, RFC 7525.
Added warnings about use of ALERT response codes and PREAUTH response.
Replaced DIGEST-MD5 SASL mechanism with SCRAM-SHA-256. DIGEST-MD5 was deprecated.
Clarified that any command received from the client resets server autologout timer.
Revised IANA registration procedure for IMAP extensions and removed "X" convention in
accordance with BCP 178.
Loosened requirements on servers when closing connections to be more aligned with
existing practices.

6.
[RFC2231]

7.
8.

9.

10.
11.
12.

13.

14.
15. SHOULD

16.

17.
18.

19.
20.
21.
22. MUST

SHOULD MUST
23.
24.

25.
26.
27.
28.
29.

30.

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 144

Appendix G. Acknowledgement
Earlier versions of this document were edited by Mark Crispin. Sadly, he is no longer available to
help with this work. Editors of this revisions are hoping that Mark would have approved.

Chris Newman has contributed text on I18N and use of UTF-8 in messages and mailbox names.

Thank you to Tony Hansen for helping with the index generation. Thank you to Murray
Kucherawy, Timo Sirainen, Bron Gondwana, Stephan Bosch, Robert Sparks, Arnt Gulbrandsen,
Benjamin Kaduk, Daniel Migault, Roman Danyliw and Eric Vyncke for extensive feedback.

This document incorporates text from RFC 4315 (by Mark Crispin), RFC 4466 (by Cyrus Daboo),
RFC 4731 (by Dave Cridland), RFC 5161 (by Arnt Gulbrandsen), RFC 5465 (by Arnt Gulbrandsen
and Curtis King), RFC 5530 (by Arnt Gulbrandsen), RFC 5819 (by Timo Sirainen), RFC 6154 (by
Jamie Nicolson), RFC 8438 (by Stephan Bosch) so work done by authors/editors of these
documents is appreciated. Note that editors of this document were redacted from the above list.

The CHILDREN return option was originally proposed by Mike Gahrns and Raymond Cheng in
. Most of the information in Section 6.3.9.5 is taken directly from their original

specification .

Thank you to Damian Poddebniak, Fabian Ising, Hanno Boeck and Sebastian Schinzel for
pointing out that the ENABLE command should be a member of "command-auth" and not
"command-any" ABNF production, as well as pointing out security issues associated with ALERT,
PREAUTH and other responses received before authentication.

Index

-FLAGS <flag list>

Appendix F. Other Recommended IMAP Extensions
Support for the following extensions is recommended for all IMAP client and servers. While they
significantly reduce bandwidth and/or number of round trips used by IMAP in certain situations,
the EXTRA WG decided that requiring them as a part of IMAP4rev2 would push the bar to
implement too high for new implementations. Also note that absence of any IMAP extension
from this list doesn't make it somehow deficient or not recommended for use with IMAP4rev2.

QRESYNC and CONDSTORE extensions . They make discovering changes to IMAP
mailboxes more efficient, at the expense of storing a bit more state.
OBJECTID extension helps with preserving IMAP client cache when messages
moved/copied or mailboxes are renamed.

1. [RFC7162]

2. [RFC8474]

[RFC3348]
[RFC3348]

- A B C D E F H I J K L M N O P R S T U

-

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 145

-FLAGS <flag list>

-FLAGS.SILENT <flag list>
-FLAGS.SILENT <flag list>

ALERT (response code)
ALERT (response code)

ALL (fetch item)
ALL (fetch item)

ALL (search key)
ALL (search key)

ALL (search result option)
ALL (search result option)

ALL (search return item name)
ALL (search return item name)

ALREADYEXISTS (response code)
ALREADYEXISTS (response code)

ANSWERED (search key)
ANSWERED (search key)

APPEND (command)
APPEND (command)

APPENDUID (response code)
APPENDUID (response code)

AUTHENTICATE (command)
AUTHENTICATE (command)

AUTHENTICATIONFAILED (response code)
AUTHENTICATIONFAILED (response code)

AUTHORIZATIONFAILED (response code)
AUTHORIZATIONFAILED (response code)

All (mailbox name attribute)
All (mailbox name attribute)

Answered (system flag)
Answered (system flag)

Archive (mailbox name attribute)
Archive (mailbox name attribute)

BAD (response)
BAD (response)

A

B

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 146

BADCHARSET (response code)
BADCHARSET (response code)

BCC <string> (search key)
BCC <string> (search key)

BEFORE <date> (search key)
BEFORE <date> (search key)

BINARY.PEEK[<section-binary>]<<partial>> (fetch item)
BINARY.PEEK[<section-binary>]<<partial>> (fetch item)

BINARY.SIZE[<section-binary>] (fetch item)
BINARY.SIZE[<section-binary>] (fetch item)

BINARY.SIZE[<section-binary>] (fetch result)
BINARY.SIZE[<section-binary>] (fetch result)

BINARY[<section-binary>]<<number>> (fetch result)
BINARY[<section-binary>]<<number>> (fetch result)

BINARY[<section-binary>]<<partial>> (fetch item)
BINARY[<section-binary>]<<partial>> (fetch item)

BODY (fetch item)
BODY (fetch item)

BODY (fetch result)
BODY (fetch result)

BODY <string> (search key)
BODY <string> (search key)

BODY.PEEK[<section>]<<partial>> (fetch item)
BODY.PEEK[<section>]<<partial>> (fetch item)

BODYSTRUCTURE (fetch item)
BODYSTRUCTURE (fetch item)

BODYSTRUCTURE (fetch result)
BODYSTRUCTURE (fetch result)

BODY[<section>]<<origin octet>> (fetch result)
BODY[<section>]<<origin octet>> (fetch result)

BODY[<section>]<<partial>> (fetch item)
BODY[<section>]<<partial>> (fetch item)

BYE (response)
BYE (response)

Body Structure (message attribute)
Body Structure (message attribute)

CANNOT (response code)

C

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 147

CANNOT (response code)

CAPABILITY (command)
CAPABILITY (command)

CAPABILITY (response code)
CAPABILITY (response code)

CAPABILITY (response)
CAPABILITY (response)

CC <string> (search key)
CC <string> (search key)

CLIENTBUG (response code)
CLIENTBUG (response code)

CLOSE (command)
CLOSE (command)

CLOSED (response code)
CLOSED (response code)

CONTACTADMIN (response code)
CONTACTADMIN (response code)

COPY (command)
COPY (command)

COPYUID (response code)
COPYUID (response code)

CORRUPTION (response code)
CORRUPTION (response code)

COUNT (search result option)
COUNT (search result option)

COUNT (search return item name)
COUNT (search return item name)

CREATE (command)
CREATE (command)

DELETE (command)
DELETE (command)

DELETED (search key)
DELETED (search key)

DELETED (status item)
DELETED (status item)

DRAFT (search key)
DRAFT (search key)

D

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 148

Deleted (system flag)
Deleted (system flag)

Draft (system flag)
Draft (system flag)

Drafts (mailbox name attribute)
Drafts (mailbox name attribute)

ENABLE (command)
ENABLE (command)

ENVELOPE (fetch item)
ENVELOPE (fetch item)

ENVELOPE (fetch result)
ENVELOPE (fetch result)

ESEARCH (response)
ESEARCH (response)

EXAMINE (command)
EXAMINE (command)

EXPIRED (response code)
EXPIRED (response code)

EXPUNGE (command)
EXPUNGE (command)

EXPUNGE (response)
EXPUNGE (response)

EXPUNGEISSUED (response code)
EXPUNGEISSUED (response code)

Envelope Structure (message attribute)
Envelope Structure (message attribute)

FAST (fetch item)
FAST (fetch item)

FETCH (command)
FETCH (command)

FETCH (response)
FETCH (response)

FLAGGED (search key)
FLAGGED (search key)

FLAGS (fetch item)
FLAGS (fetch item)

E

F

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 149

FLAGS (fetch result)
FLAGS (fetch result)

FLAGS (response)
FLAGS (response)

FLAGS <flag list> (store command data item)
FLAGS <flag list> (store command data item)

FLAGS <flag list>
FLAGS <flag list>

FLAGS.SILENT <flag list> (store command data item)
FLAGS.SILENT <flag list> (store command data item)

FLAGS.SILENT <flag list>
FLAGS.SILENT <flag list>

FROM <string> (search key)
FROM <string> (search key)

FULL (fetch item)
FULL (fetch item)

Flagged (mailbox name attribute)
Flagged (mailbox name attribute)

Flagged (system flag)
Flagged (system flag)

Flags (message attribute)
Flags (message attribute)

Forwarded (predefined flag)
Forwarded (predefined flag)

HASCHILDREN (response code)
HASCHILDREN (response code)

HEADER (part specifier)
HEADER (part specifier)

HEADER <field-name> <string> (search key)
HEADER <field-name> <string> (search key)

HEADER.FIELDS (part specifier)
HEADER.FIELDS (part specifier)

HEADER.FIELDS.NOT (part specifier)
HEADER.FIELDS.NOT (part specifier)

HasChildren (mailbox name attribute)
HasChildren (mailbox name attribute)

HasNoChildren (mailbox name attribute)

H

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 150

HasNoChildren (mailbox name attribute)

IDLE (command)
IDLE (command)

INTERNALDATE (fetch item)
INTERNALDATE (fetch item)

INTERNALDATE (fetch result)
INTERNALDATE (fetch result)

INUSE (response code)
INUSE (response code)

Internal Date (message attribute)
Internal Date (message attribute)

Junk (mailbox name attribute)
Junk (mailbox name attribute)

Junk (predefined flag)
Junk (predefined flag)

KEYWORD <flag> (search key)
KEYWORD <flag> (search key)

Keyword (type of flag)
Keyword (type of flag)

LARGER <n> (search key)
LARGER <n> (search key)

LIMIT (response code)
LIMIT (response code)

LIST (command)
LIST (command)

LIST (response)
LIST (response)

LOGOUT (command)
LOGOUT (command)

MAX (search result option)
MAX (search result option)

I

J

K

L

M

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 151

MAX (search return item name)
MAX (search return item name)

MAY (specification requirement term)
MAY (specification requirement term)

MDNSent (predefined flag)
MDNSent (predefined flag)

MESSAGES (status item)
MESSAGES (status item)

MIME (part specifier)
MIME (part specifier)

MIN (search result option)
MIN (search result option)

MIN (search return item name)
MIN (search return item name)

MOVE (command)
MOVE (command)

MUST (specification requirement term)
MUST (specification requirement term)

MUST NOT (specification requirement term)
MUST NOT (specification requirement term)

Marked (mailbox name attribute)
Marked (mailbox name attribute)

Message Sequence Number (message attribute)
Message Sequence Number (message attribute)

NAMESPACE (command)
NAMESPACE (command)

NAMESPACE (response)
NAMESPACE (response)

NO (response)
NO (response)

NONEXISTENT (response code)
NONEXISTENT (response code)

NOOP (command)
NOOP (command)

NOPERM (response code)
NOPERM (response code)

NOT <search-key> (search key)

N

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 152

NOT <search-key> (search key)

NOT RECOMMENDED (specification requirement term)
NOT RECOMMENDED (specification requirement term)

Noinferiors (mailbox name attribute)
Noinferiors (mailbox name attribute)

NonExistent (mailbox name attribute)
NonExistent (mailbox name attribute)

Noselect (mailbox name attribute)
Noselect (mailbox name attribute)

NotJunk (predefined flag)
NotJunk (predefined flag)

OK (response)
OK (response)

ON <date> (search key)
ON <date> (search key)

OPTIONAL (specification requirement term)
OPTIONAL (specification requirement term) OPTIONAL (specification requirement term)

OPTIONAL (specification requirement term)
OPTIONAL (specification requirement term) OPTIONAL (specification requirement term)

OR <search-key1> <search-key2> (search key)
OR <search-key1> <search-key2> (search key)

OVERQUOTA (response code)
OVERQUOTA (response code)

PARSE (response code)
PARSE (response code)

PERMANENTFLAGS (response code)
PERMANENTFLAGS (response code)

PREAUTH (response)
PREAUTH (response)

PRIVACYREQUIRED (response code)
PRIVACYREQUIRED (response code)

Permanent Flag (class of flag)
Permanent Flag (class of flag)

Phishing (predefined flag)
Phishing (predefined flag)

O

P

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 153

Predefined keywords
Predefined keywords

READ-ONLY (response code)
READ-ONLY (response code)

READ-WRITE (response code)
READ-WRITE (response code)

RECOMMENDED (specification requirement term)
RECOMMENDED (specification requirement term)

RENAME (command)
RENAME (command)

REQUIRED (specification requirement term)
REQUIRED (specification requirement term)

RFC-5322] Size (message attribute)
RFC-5322] Size (message attribute)

RFC822.SIZE (fetch item)
RFC822.SIZE (fetch item)

RFC822.SIZE (fetch result)
RFC822.SIZE (fetch result)

Recent (system flag)
Recent (system flag)

Remote (mailbox name attribute)
Remote (mailbox name attribute)

SAVE (search result option)
SAVE (search result option)

SEARCH (command)
SEARCH (command)

SEEN (search key)
SEEN (search key)

SELECT (command)
SELECT (command)

SENTBEFORE <date> (search key)
SENTBEFORE <date> (search key)

SENTON <date> (search key)
SENTON <date> (search key)

SENTSINCE <date> (search key)
SENTSINCE <date> (search key)

R

S

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 154

SERVERBUG (response code)
SERVERBUG (response code)

SHOULD (specification requirement term)
SHOULD (specification requirement term)

SHOULD NOT (specification requirement term)
SHOULD NOT (specification requirement term)

SINCE <date> (search key)
SINCE <date> (search key)

SIZE (status item)
SIZE (status item)

SMALLER <n> (search key)
SMALLER <n> (search key)

STARTTLS (command)
STARTTLS (command)

STATUS (command)
STATUS (command)

STATUS (response)
STATUS (response)

STORE (command)
STORE (command)

SUBJECT <string> (search key)
SUBJECT <string> (search key)

SUBSCRIBE (command)
SUBSCRIBE (command)

Seen (system flag)
Seen (system flag)

Sent (mailbox name attribute)
Sent (mailbox name attribute)

Session Flag (class of flag)
Session Flag (class of flag)

Subscribed (mailbox name attribute)
Subscribed (mailbox name attribute)

System Flag (type of flag)
System Flag (type of flag)

TEXT (part specifier)
TEXT (part specifier)

TEXT <string> (search key)

T

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 155

TEXT <string> (search key)

TO <string> (search key)
TO <string> (search key)

TRYCREATE (response code)
TRYCREATE (response code)

Trash (mailbox name attribute)
Trash (mailbox name attribute)

UID (command)
UID (command)

UID (fetch item)
UID (fetch item)

UID (fetch result)
UID (fetch result)

UID <sequence set> (search key)
UID <sequence set> (search key)

UIDNEXT (response code)
UIDNEXT (response code)

UIDNEXT (status item)
UIDNEXT (status item)

UIDNOTSTICKY (response code)
UIDNOTSTICKY (response code)

UIDVALIDITY (response code)
UIDVALIDITY (response code)

UIDVALIDITY (status item)
UIDVALIDITY (status item)

UNANSWERED (search key)
UNANSWERED (search key)

UNAVAILABLE (response code)
UNAVAILABLE (response code)

UNDELETED (search key)
UNDELETED (search key)

UNDRAFT (search key)
UNDRAFT (search key)

UNFLAGGED (search key)
UNFLAGGED (search key)

UNKEYWORD <flag> (search key)
UNKEYWORD <flag> (search key)

U

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 156

UNKNOWN-CTE (response code)
UNKNOWN-CTE (response code)

UNSEEN (search key)
UNSEEN (search key)

UNSEEN (status item)
UNSEEN (status item)

UNSELECT (command)
UNSELECT (command)

UNSUBSCRIBE (command)
UNSUBSCRIBE (command)

Unique Identifier (UID) (message attribute)
Unique Identifier (UID) (message attribute)

Unmarked (mailbox name attribute)
Unmarked (mailbox name attribute)

Authors' Addresses
Alexey Melnikov ()������
Isode Ltd.
14 Castle Mews
Hampton, Middlesex
TW12 2NP
United Kingdom

 Alexey.Melnikov@isode.com Email:

Barry Leiba ()������
Futurewei Technologies

 +1 646 827 0648 Phone:
 barryleiba@computer.org Email:

 http://internetmessagingtechnology.org/ URI:

RFC 0000 IMAP4rev2 February 2021

Melnikov & Leiba Standards Track Page 157

mailto:Alexey.Melnikov@isode.com
tel:+1%20646%20827%200648
mailto:barryleiba@computer.org
http://internetmessagingtechnology.org/

	RFC 0000
	Internet Message Access Protocol (IMAP) - Version 4rev2
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. How to Read This Document
	1.1. Organization of This Document
	1.2. Conventions Used in This Document
	1.3. Special Notes to Implementors

	2. Protocol Overview
	2.1. Link Level
	2.2. Commands and Responses
	2.2.1. Client Protocol Sender and Server Protocol Receiver
	2.2.2. Server Protocol Sender and Client Protocol Receiver

	2.3. Message Attributes
	2.3.1. Message Numbers
	2.3.1.1. Unique Identifier (UID) Message Attribute
	2.3.1.2. Message Sequence Number Message Attribute

	2.3.2. Flags Message Attribute
	2.3.3. Internal Date Message Attribute
	2.3.4. [RFC-5322] Size Message Attribute
	2.3.5. Envelope Structure Message Attribute
	2.3.6. Body Structure Message Attribute

	2.4. Message Texts

	3. State and Flow Diagram
	3.1. Not Authenticated State
	3.2. Authenticated State
	3.3. Selected State
	3.4. Logout State

	4. Data Formats
	4.1. Atom
	4.1.1. Sequence set and UID set

	4.2. Number
	4.3. String
	4.3.1. 8-bit and Binary Strings

	4.4. Parenthesized List
	4.5. NIL

	5. Operational Considerations
	5.1. Mailbox Naming
	5.1.1. Mailbox Hierarchy Naming
	5.1.2. Namespaces
	5.1.2.1. Historic Mailbox Namespace Naming Convention
	5.1.2.2. Common namespace models

	5.2. Mailbox Size and Message Status Updates
	5.3. Response when no Command in Progress
	5.4. Autologout Timer
	5.5. Multiple Commands in Progress (Command Pipelining)

	6. Client Commands
	6.1. Client Commands - Any State
	6.1.1. CAPABILITY Command
	6.1.2. NOOP Command
	6.1.3. LOGOUT Command

	6.2. Client Commands - Not Authenticated State
	6.2.1. STARTTLS Command
	6.2.2. AUTHENTICATE Command
	6.2.3. LOGIN Command

	6.3. Client Commands - Authenticated State
	6.3.1. ENABLE Command
	6.3.1.1. Note to Designers of Extensions That May Use the ENABLE Command

	6.3.2. SELECT Command
	6.3.3. EXAMINE Command
	6.3.4. CREATE Command
	6.3.5. DELETE Command
	6.3.6. RENAME Command
	6.3.7. SUBSCRIBE Command
	6.3.8. UNSUBSCRIBE Command
	6.3.9. LIST Command
	6.3.9.1. LIST Selection Options
	6.3.9.2. LIST Return Options
	6.3.9.3. General Principles for Returning LIST Responses
	6.3.9.4. Additional LIST-related Requirements on Clients
	6.3.9.5. The CHILDREN Return Option
	6.3.9.6. CHILDINFO Extended Data Item
	6.3.9.7. OLDNAME Extended Data Item
	6.3.9.8. LIST Command Examples

	6.3.10. NAMESPACE Command
	6.3.11. STATUS Command
	6.3.12. APPEND Command
	6.3.13. IDLE Command

	6.4. Client Commands - Selected State
	6.4.1. CLOSE Command
	6.4.2. UNSELECT Command
	6.4.3. EXPUNGE Command
	6.4.4. SEARCH Command
	6.4.4.1. SAVE result option and SEARCH result variable
	6.4.4.2. Multiple Commands in Progress
	6.4.4.3. Refusing to Save Search Results
	6.4.4.4. Examples showing use of SAVE result option

	6.4.5. FETCH Command
	6.4.5.1. FETCH section specification

	6.4.6. STORE Command
	6.4.7. COPY Command
	6.4.8. MOVE Command
	6.4.9. UID Command

	6.5. Client Commands - Experimental/Expansion

	7. Server Responses
	7.1. Server Responses - Generic Status Responses
	7.1.1. OK Response
	7.1.2. NO Response
	7.1.3. BAD Response
	7.1.4. PREAUTH Response
	7.1.5. BYE Response

	7.2. Server Responses - Server Status
	7.2.1. ENABLED Response
	7.2.2. CAPABILITY Response

	7.3. Server Responses - Mailbox Status
	7.3.1. LIST Response
	7.3.2. NAMESPACE Response
	7.3.3. STATUS Response
	7.3.4. ESEARCH Response
	7.3.5. FLAGS Response

	7.4. Server Responses - Mailbox Size
	7.4.1. EXISTS Response

	7.5. Server Responses - Message Status
	7.5.1. EXPUNGE Response
	7.5.2. FETCH Response

	7.6. Server Responses - Command Continuation Request

	8. Sample IMAP4rev2 connection
	9. Formal Syntax
	10. Author's Note
	11. Security Considerations
	11.1. TLS related Security Considerations
	11.2. STARTTLS command versa use of Implicit TLS port
	11.3. Client handling of unsolicited responses not suitable for the current connection state
	11.4. COPYUID and APPENDUID response codes
	11.5. LIST command and Other Users' namespace
	11.6. Use of MD5
	11.7. Other Security Considerations

	12. IANA Considerations
	12.1. Updates to IMAP4 Capabilities registry
	12.2. GSSAPI/SASL service name
	12.3. LIST Selection Options, LIST Return Options, LIST extended data items
	12.4. IMAP Mailbox Name Attributes and IMAP Response Codes

	13. References
	13.1. Normative References
	13.2. Informative References (related protocols)
	13.3. Informative References (historical aspects of IMAP and related protocols)

	Appendix A. Backward compatibility with IMAP4rev1
	A.1. Mailbox International Naming Convention for compatibility with IMAP4rev1
	Appendix B. Backward compatibility with BINARY extension
	Appendix C. Backward compatibility with LIST-EXTENDED extension
	Appendix D. 63 bit body part and message sizes
	Appendix E. Changes from RFC 3501 / IMAP4rev1
	Appendix F. Other Recommended IMAP Extensions
	Appendix G. Acknowledgement
	Index
	Authors' Addresses

