
Internet X.509 Public Key Infrastructure:
Additional Algorithm Identifiers for RSASSA-PSS
and ECDSA using SHAKEs

Abstract

Digital signatures are used to sign messages, X.509 certificates and CRLs. This document updates the

"Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List Profile" (RFC3279) and describes the conventions for using the SHAKE function

family in Internet X.509 certificates and revocation lists as one-way hash functions with the RSA

Probabilistic signature and ECDSA signature algorithms. The conventions for the associated subject

public keys are also described.

Stream: Internet Engineering Task Force (IETF)

RFC: 9999

Updates: 3279

Category: Standards Track

Published: August 2019

ISSN: 2070-1721

Authors: P.K. Kampanakis

Cisco Systems

Q.D. Dang

NIST

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus

of the IETF community. It has received public review and has been approved for publication by the

Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in

Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it

may be obtained at .https://www.rfc-editor.org/info/rfc9999

Kampanakis & Dang Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9999
https://www.rfc-editor.org/rfc/rfc3279
https://www.rfc-editor.org/info/rfc9999

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this document.

Please review these documents carefully, as they describe your rights and restrictions with respect to

this document. Code Components extracted from this document must include Simplified BSD License

text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as

described in the Simplified BSD License.

https://trustee.ietf.org/license-info

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 2

https://trustee.ietf.org/license-info

1. Introduction

 defines cryptographic algorithm identifiers for the Internet X.509 Certificate and

Certificate Revocation Lists (CRL) profile . This document updates RFC3279 and defines

identifiers for several cryptographic algorithms that use variable length output SHAKE functions

introduced in which can be used with .

Table of Contents

1. Introduction

2. Terminology

3. Identifiers

4. Use in PKIX

4.1. Signatures

4.1.1. RSASSA-PSS Signatures

4.1.2. ECDSA Signatures

4.2. Public Keys

5. IANA Considerations

6. Security Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Appendix A. ASN.1 module

 Authors' Addresses

[RFC3279]

[RFC5280]

[SHA3]

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 3

In the SHA-3 family, two extendable-output functions (SHAKEs), SHAKE128 and SHAKE256, are

defined. Four other hash function instances, SHA3-224, SHA3-256, SHA3-384, and SHA3-512, are

also defined but are out of scope for this document. A SHAKE is a variable length hash function

defined as SHAKE(M, d) where the output is a d-bits-long digest of message M. The corresponding

collision and second-preimage-resistance strengths for SHAKE128 are min(d/2,128) and min(d,128)

bits, respectively (Appendix A.1). And the corresponding collision and second-preimage-

resistance strengths for SHAKE256 are min(d/2,256) and min(d,256) bits, respectively.

A SHAKE can be used as the message digest function (to hash the message to be signed) in RSASSA-

PSS and ECDSA and as the hash in the mask generation function (MGF) in

RSASSA-PSS.

[SHA3]

[RFC8017] [X9.62]

2. Terminology

The key words " ", " ", " ", " ", " ", " ",

" ", " ", " ", " ", and " " in this

document are to be interpreted as described in BCP 14 when, and only when,

they appear in all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD

SHOULD NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Identifiers

This section defines four new object identifiers (OIDs), for RSASSA-PSS and ECDSA with each of

SHAKE128 and SHAKE256. The same algorithm identifiers can be used for identifying a public key

in RSASSA-PSS.

The new identifiers for RSASSA-PSS signatures using SHAKEs are below.

 id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD1 }

 id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD2 }

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 4

4. Use in PKIX

The new algorithm identifiers of ECDSA signatures using SHAKEs are below.

The parameters for the four identifiers above be absent. That is, the identifier be a

SEQUENCE of one component, the OID.

Sections 4.1.1 and 4.1.2 specify the required output length for each use of SHAKE128 or SHAKE256

in RSASSA-PSS and ECDSA. In summary, when hashing messages to be signed, output lengths of

SHAKE128 and SHAKE256 are 256 and 512 bits respectively. When the SHAKEs are used as mask

generation functions RSASSA-PSS, their output length is (8*ceil((n-1)/8) - 264) or (8*ceil((n-1)/8) -

520) bits, respectively, where n is the RSA modulus size in bits.

 id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD3 }

 id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD4 }

MUST SHALL

4.1. Signatures

Signatures are used in a number of different ASN.1 structures. As shown in the ASN.1 representation

from below, in an X.509 certificate, a signature is encoded with an algorithm identifier in

the signatureAlgorithm attribute and a signatureValue attribute that contains the actual signature.

[RFC5280]

 Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 5

The identifiers defined in Section 3 can be used as the AlgorithmIdentifier in the signatureAlgorithm

field in the sequence Certificate and the signature field in the sequence TBSCertificate in X.509

. The parameters of these signature algorithms are absent as explained in Section 3.

Conforming CA implementations specify the algorithms explicitly by using the OIDs specified

in Section 3 when encoding RSASSA-PSS or ECDSA with SHAKE signatures in certificates and

CRLs. Conforming client implementations that process certificates and CRLs using RSASSA-PSS or

ECDSA with SHAKE recognize the corresponding OIDs. Encoding rules for RSASSA-PSS

and ECDSA signature values are specified in and , respectively.

When using RSASSA-PSS or ECDSA with SHAKEs, the RSA modulus and ECDSA curve order

 be chosen in line with the SHAKE output length. Refer to Section 6 for more details.

[RFC5280]

MUST

MUST

[RFC4055] [RFC5480]

SHOULD

4.1.1. RSASSA-PSS Signatures

The RSASSA-PSS algorithm is defined in . When id-RSASSA-PSS-SHAKE128 or id-

RSASSA-PSS-SHAKE256 specified in Section 3 is used, the encoding omit the parameters

field. That is, the AlgorithmIdentifier be a SEQUENCE of one component, id-RSASSA-PSS-

SHAKE128 or id-RSASSA-PSS-SHAKE256. defines RSASSA-PSS-params that are used

to define the algorithms and inputs to the algorithm. This specification does not use parameters

because the hash, mask generation algorithm, trailer and salt are embedded in the OID definition.

The hash algorithm to hash a message being signed and the hash algorithm used as the mask

generation function be the same: both SHAKE128 or both SHAKE256. The output length of

the hash algorithm which hashes the message be 32 (for SHAKE128) or 64 bytes (for

SHAKE256).

The mask generation function takes an octet string of variable length and a desired output length as

input, and outputs an octet string of the desired length. In RSASSA-PSS with SHAKEs, the SHAKEs

 be used natively as the MGF function, instead of the MGF1 algorithm that uses the hash

function in multiple iterations as specified in . As explained

in Step 9 of

The RSASSA-PSS saltLength be 32 bytes for id-RSASSA-PSS-SHAKE128 or 64 bytes for id-

RSASSA-PSS-SHAKE256. Finally, the trailerField be 1, which represents the trailer field with

hexadecimal value 0xBC .

[RFC8017]

MUST

SHALL

[RFC4055]

MUST

SHALL

MUST

Appendix B.2.1 of [RFC8017][RFC8017]

Section 9.1.1 of [RFC8017]

MUST

MUST

[RFC8017]

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 6

https://www.rfc-editor.org/info/rfc8017#section-B.2.1
https://www.rfc-editor.org/info/rfc8017#section-9.1.1

4.2. Public Keys

Certificates conforming to can convey a public key for any public key algorithm. The

certificate indicates the public key algorithm through an algorithm identifier. This algorithm identifier

is an OID and optionally associated parameters. The conventions and encoding for RSASSA-PSS and

ECDSA

Traditionally, the rsaEncryption object identifier is used to identify RSA public keys. The

rsaEncryption object identifier continues to identify the subject public key when the RSA private key

owner does not wish to limit the use of the public key exclusively to RSASSA-PSS with SHAKEs.

When the RSA private key owner wishes to limit the use of the public key exclusively to RSASSA-

PSS with SHAKEs, the AlgorithmIdentifiers for RSASSA-PSS defined in Section 3 be used

as the algorithm field in the SubjectPublicKeyInfo sequence . Conforming client

implementations that process RSASSA-PSS with SHAKE public keys when processing certificates

and CRLs recognize the corresponding OIDs.

4.1.2. ECDSA Signatures

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in . When the id-ecdsa-

with-shake128 or id-ecdsa-with-shake256 (specified in Section 3) algorithm identifier appears, the

respective SHAKE function (SHAKE128 or SHAKE256) is used as the hash. The encoding

omit the parameters field. That is, the AlgorithmIdentifier be a SEQUENCE of one

component, the OID id-ecdsa-with-shake128 or id-ecdsa-with-shake256.

For simplicity and compliance with the ECDSA standard specification, the output length of the hash

function must be explicitly determined. The output length, d, for SHAKE128 or SHAKE256 used in

ECDSA be 256 or 512 bits, respectively.

Conforming CA implementations that generate ECDSA with SHAKE signatures in certificates or

CRLs generate such signatures with a deterministically generated, non-random k in

accordance with all the requirements specified in . also generate such signatures in

accordance with all other recommendations in or if they have a stated policy that

requires conformance to those standards. Those standards have not specified SHAKE128 and

SHAKE256 as hash algorithm options. However, SHAKE128 and SHAKE256 with output length

being 32 and 64 octets, respectively, can be used instead of 256 and 512-bit output hash algorithms

such as SHA256 and SHA512.

[X9.62]

MUST

SHALL

MUST

SHOULD

[RFC6979] MAY

[X9.62] [SEC1]

[RFC5280]

Section 2.3.1 of [RFC3279]Section 2.3.5 of [RFC3279]Section 3.1 of [RFC4055]Section 2.1

of [RFC5480]

SHOULD

[RFC5280]

MUST

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 7

https://www.rfc-editor.org/info/rfc3279#section-2.3.1
https://www.rfc-editor.org/info/rfc3279#section-2.3.5
https://www.rfc-editor.org/info/rfc4055#section-3.1
https://www.rfc-editor.org/info/rfc5480#section-2.1

Conforming CA implementations specify the X.509 public key algorithm explicitly by using

the OIDs specified in Section 3 when encoding ECDSA with SHAKE public keys in certificates and

CRLs. Conforming client implementations that process ECDSA with SHAKE public keys when

processing certificates and CRLs recognize the corresponding OIDs.

The identifier parameters, as explained in Section 3, be absent.

MUST

MUST

MUST

5. IANA Considerations

One object identifier for the ASN.1 module in Appendix A is requested for the SMI Security for PKIX

Module Identifiers (1.3.6.1.5.5.7.0) registry:

Decimal Description References

TBD id-mod-pkix1-shakes-2019 RFC 9999

Table 1

IANA is requested to update the SMI Security for PKIX Algorithms (1.3.6.1.5.5.7.6)

registry with four additional entries:

Decimal Description References

TBD1 id-RSASSA-PSS-SHAKE128 RFC 9999

TBD2 id-RSASSA-PSS-SHAKE256 RFC 9999

TBD3 id-ecdsa-with-shake128 RFC 9999

TBD4 id-ecdsa-with-shake256 RFC 9999

Table 2

IANA is also requested to update the Hash Function Textual Names Registry with two

additional entries for SHAKE128 and SHAKE256:

Hash Function Name OID Reference

shake128 2.16.840.1.101.3.4.2.11 RFC 9999

shake256 2.16.840.1.101.3.4.2.12 RFC 9999

[SMI-PKIX]

[Hash-Texts]

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 8

[RFC2119]

[RFC3279]

8. References

8.1. Normative References

, ,

, , , March 1997

.

,

Table 3

6. Security Considerations

This document updates . The security considerations section of that document applies to

this specification as well.

NIST has defined appropriate use of the hash functions in terms of the algorithm strengths and

expected time frames for secure use in Special Publications (SPs) and .

These documents can be used as guides to choose appropriate key sizes for various security scenarios.

SHAKE128 with output length of 256-bits offers 128-bits of collision and preimage resistance. Thus,

SHAKE128 OIDs in this specification are with 2048 (112-bit security) or 3072-bit

(128-bit security) RSA modulus or curves with group order of 256-bits (128-bit security). SHAKE256

with 512-bits output length offers 256-bits of collision and preimage resistance. Thus, the SHAKE256

OIDs in this specification are with 4096-bit RSA modulus or higher or curves with

group order of at least 512 bits such as NIST Curve P-521 (256-bit security). Note that we

recommended 4096-bit RSA because we would need 15360-bit modulus for 256-bits of security which

is impractical for today's technology.

[RFC3279]

[SP800-78-4] [SP800-107]

RECOMMENDED

RECOMMENDED

7. Acknowledgements

We would like to thank Sean Turner, Jim Schaad and Eric Rescorla for their valuable contributions to

this document.

The authors would like to thank Russ Housley for his guidance and very valuable contributions with

the ASN.1 module.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP

14 RFC 2119 DOI 10.17487/RFC2119 ,

<https://www.rfc-editor.org/info/rfc2119>

Bassham, L., Polk, W., and R. Housley "Algorithms and Identifiers for the

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 9

https://www.rfc-editor.org/info/rfc2119

[RFC4055]

[RFC5280]

[RFC5480]

[RFC8017]

[RFC8174]

[SHA3]

, , , April 2002

.

,

, ,

, June 2005 .

,

, , , May 2008

.

,

, ,

, March 2009 .

,

, , ,

November 2016 .

, ,

, , , May 2017

.

,

,

August 2015

List (CRL) Profile" RFC 3279 DOI 10.17487/RFC3279 ,

<https://www.rfc-editor.org/info/rfc3279>

Schaad, J., Kaliski, B., and R. Housley "Additional Algorithms and Identifiers for

RSA Cryptography for use in the Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile" RFC 4055 DOI

10.17487/RFC4055 , <https://www.rfc-editor.org/info/rfc4055>

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk

"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 ,

<https://www.rfc-editor.org/info/rfc5280>

Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk "Elliptic Curve

Cryptography Subject Public Key Information" RFC 5480 DOI 10.17487/

RFC5480 , <https://www.rfc-editor.org/info/rfc5480>

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch "PKCS #1: RSA

Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

, <https://www.rfc-editor.org/info/rfc8017>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 ,

<https://www.rfc-editor.org/info/rfc8174>

National Institute of Standards and Technology (NIST) "SHA-3 Standard -

Permutation-Based Hash and Extendable-Output Functions FIPS PUB 202"

,

<https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 10

https://www.rfc-editor.org/info/rfc3279
https://www.rfc-editor.org/info/rfc4055
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8174
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions

[Hash-Texts]

[RFC5912]

[RFC6979]

[SEC1]

[SMI-PKIX]

[SP800-107]

[SP800-78-4]

[X9.62]

8.2. Informative References

, , July 2017

.

,

, , , June

2010 .

,

, ,

, August 2013 .

,

, May 2009 .

, , March 2019

.

,

, May 2014

,

, May

2014

,

, November 2005.

IANA "Hash Function Textual Names" ,

<https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml>

Hoffman, P. and J. Schaad "New ASN.1 Modules for the Public Key

Infrastructure Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912

, <https://www.rfc-editor.org/info/rfc5912>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and

Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/

RFC6979 , <https://www.rfc-editor.org/info/rfc6979>

Standards for Efficient Cryptography Group "SEC 1: Elliptic Curve

Cryptography" , <http://www.secg.org/sec1-v2.pdf>

IANA "SMI Security for PKIX Algorithms" ,

<https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.6>

National Institute of Standards and Technology (NIST) "SP800-107:

Recommendation for Applications Using Approved Hash Algorithms" ,

<https://csrc.nist.gov/csrc/media/publications/sp/800-107/rev-1/final/documents/draft_revised_sp800-107.pdf

National Institute of Standards and Technology (NIST) "SP800-78-4:

Cryptographic Algorithms and Key Sizes for Personal Identity Verification"

,

<https://csrc.nist.gov/csrc/media/publications/sp/800-78/4/final/documents/sp800_78-4_revised_draft.pdf

American National Standard for Financial Services (ANSI) "X9.62-2005: Public

Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital

Signature Standard (ECDSA)"

Appendix A. ASN.1 module

This appendix includes the ASN.1 module for SHAKEs in X.509. This module does not come from

any existing RFC.

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 11

https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc6979
http://www.secg.org/sec1-v2.pdf
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.6
https://csrc.nist.gov/csrc/media/publications/sp/800-107/rev-1/final/documents/draft_revised_sp800-107.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-78/4/final/documents/sp800_78-4_revised_draft.pdf

 PKIXAlgsForSHAKE-2019 { iso(1) identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-shakes-2019(TBD) }

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL;

 IMPORTS

 -- FROM [RFC5912]

 PUBLIC-KEY, SIGNATURE-ALGORITHM, DIGEST-ALGORITHM, SMIME-CAPS

 FROM AlgorithmInformation-2009

 { iso(1) identified-organization(3) dod(6) internet(1) security

(5)

 mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) }

 -- FROM [RFC5912]

 RSAPublicKey, rsaEncryption, pk-rsa, pk-ec,

 CURVE, id-ecPublicKey, ECPoint, ECParameters, ECDSA-Sig-Value

 FROM PKIXAlgs-2009 { iso(1) identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-algorithms2008-02(56) }

 ;

 --

 -- Message Digest Algorithms (mda-)

 --

 DigestAlgorithms DIGEST-ALGORITHM ::= {

 -- This expands DigestAlgorithms from [RFC5912]

 mda-shake128 |

 mda-shake256,

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 12

 ...

 }

 --

 -- One-Way Hash Functions

 --

 -- SHAKE128

 mda-shake128 DIGEST-ALGORITHM ::= {

 IDENTIFIER id-shake128 -- with output length 32 bytes.

 }

 id-shake128 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country

(16)

 us(840) organization(1) gov

(101)

 csor(3) nistAlgorithm(4)

 hashAlgs(2) 11 }

 -- SHAKE256

 mda-shake256 DIGEST-ALGORITHM ::= {

 IDENTIFIER id-shake256 -- with output length 64 bytes.

 }

 id-shake256 OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country

(16)

 us(840) organization(1) gov

(101)

 csor(3) nistAlgorithm(4)

 hashAlgs(2) 12 }

 --

 -- Public Key (pk-) Algorithms

 --

 PublicKeys PUBLIC-KEY ::= {

 -- This expands PublicKeys from [RFC5912]

 pk-rsaSSA-PSS-SHAKE128 |

 pk-rsaSSA-PSS-SHAKE256,

 ...

 }

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 13

 -- The hashAlgorithm is mda-shake128

 -- The maskGenAlgorithm is id-shake128

 -- Mask Gen Algorithm is SHAKE128 with output length

 -- (8*ceil((n-1)/8) - 264) bits, where n is the RSA

 -- modulus in bits.

 -- The saltLength is 32. The trailerField is 1.

 pk-rsaSSA-PSS-SHAKE128 PUBLIC-KEY ::= {

 IDENTIFIER id-RSASSA-PSS-SHAKE128

 KEY RSAPublicKey

 PARAMS ARE absent

 -- Private key format not in this module --

 CERT-KEY-USAGE { nonRepudiation, digitalSignature,

 keyCertSign, cRLSign }

 }

 -- The hashAlgorithm is mda-shake256

 -- The maskGenAlgorithm is id-shake256

 -- Mask Gen Algorithm is SHAKE256 with output length

 -- (8*ceil((n-1)/8) - 520)-bits, where n is the RSA

 -- modulus in bits.

 -- The saltLength is 64. The trailerField is 1.

 pk-rsaSSA-PSS-SHAKE256 PUBLIC-KEY ::= {

 IDENTIFIER id-RSASSA-PSS-SHAKE256

 KEY RSAPublicKey

 PARAMS ARE absent

 -- Private key format not in this module --

 CERT-KEY-USAGE { nonRepudiation, digitalSignature,

 keyCertSign, cRLSign }

 }

 --

 -- Signature Algorithms (sa-)

 --

 SignatureAlgs SIGNATURE-ALGORITHM ::= {

 -- This expands SignatureAlgorithms from [RFC5912]

 sa-rsassapssWithSHAKE128 |

 sa-rsassapssWithSHAKE256 |

 sa-ecdsaWithSHAKE128 |

 sa-ecdsaWithSHAKE256,

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 14

 ...

 }

 --

 -- SMIME Capabilities (sa-)

 --

 SMimeCaps SMIME-CAPS ::= {

 -- The expands SMimeCaps from [RFC5912]

 sa-rsassapssWithSHAKE128.&smimeCaps |

 sa-rsassapssWithSHAKE256.&smimeCaps |

 sa-ecdsaWithSHAKE128.&smimeCaps |

 sa-ecdsaWithSHAKE256.&smimeCaps,

 ...

 }

 -- RSASSA-PSS with SHAKE128

 sa-rsassapssWithSHAKE128 SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-RSASSA-PSS-SHAKE128

 PARAMS ARE absent

 -- The hashAlgorithm is mda-shake128

 -- The maskGenAlgorithm is id-shake128

 -- Mask Gen Algorithm is SHAKE128 with output length

 -- (8*ceil((n-1)/8) - 264) bits, where n is the RSA

 -- modulus in bits.

 -- The saltLength is 32. The trailerField is 1

 HASHES { mda-shake128 }

 PUBLIC-KEYS { pk-rsa | pk-rsaSSA-PSS-SHAKE128 }

 SMIME-CAPS { IDENTIFIED BY id-RSASSA-PSS-SHAKE128 }

 }

 id-RSASSA-PSS-SHAKE128 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD1 }

 -- RSASSA-PSS with SHAKE256

 sa-rsassapssWithSHAKE256 SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-RSASSA-PSS-SHAKE256

 PARAMS ARE absent

 -- The hashAlgorithm is mda-shake256

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 15

 -- The maskGenAlgorithm is id-shake256

 -- Mask Gen Algorithm is SHAKE256 with output length

 -- (8*ceil((n-1)/8) - 520)-bits, where n is the

 -- RSA modulus in bits.

 -- The saltLength is 64. The trailerField is 1.

 HASHES { mda-shake256 }

 PUBLIC-KEYS { pk-rsa | pk-rsaSSA-PSS-SHAKE256 }

 SMIME-CAPS { IDENTIFIED BY id-RSASSA-PSS-SHAKE256 }

 }

 id-RSASSA-PSS-SHAKE256 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD2 }

 -- ECDSA with SHAKE128

 sa-ecdsaWithSHAKE128 SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-ecdsa-with-shake128

 VALUE ECDSA-Sig-Value

 PARAMS ARE absent

 HASHES { mda-shake128 }

 PUBLIC-KEYS { pk-ec }

 SMIME-CAPS { IDENTIFIED BY id-ecdsa-with-shake128 }

 }

 id-ecdsa-with-shake128 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD3 }

 -- ECDSA with SHAKE256

 sa-ecdsaWithSHAKE256 SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-ecdsa-with-shake256

 VALUE ECDSA-Sig-Value

 PARAMS ARE absent

 HASHES { mda-shake256 }

 PUBLIC-KEYS { pk-ec }

 SMIME-CAPS { IDENTIFIED BY id-ecdsa-with-shake256 }

 }

 id-ecdsa-with-shake256 OBJECT IDENTIFIER ::= { iso(1)

 identified-organization(3) dod(6) internet(1)

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 16

 security(5) mechanisms(5) pkix(7) algorithms(6)

 TBD4 }

 END

Authors' Addresses

Panos Kampanakis

Cisco Systems

 pkampana@cisco.com Email:

Quynh Dang

NIST

100 Bureau Drive, Stop 8930

, Gaithersburg MD 20899-8930

United States of America

 quynh.dang@nist.gov Email:

RFC 9999 SHAKE identifiers in X.509 August 2019

Kampanakis & Dang Standards Track Page 17

mailto:pkampana@cisco.com
mailto:quynh.dang@nist.gov

	Internet X.509 Public Key Infrastructure: Additional Algorithm Identifiers for RSASSA-PSS and ECDSA using SHAKEs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1.Â€Introduction
	2.Â€Terminology
	3.Â€Identifiers
	4.Â€Use in PKIX
	4.1.Â€Signatures
	4.1.1.Â€RSASSA-PSS Signatures
	4.1.2.Â€ECDSA Signatures

	4.2.Â€Public Keys

	5.Â€IANA Considerations
	6.Â€Security Considerations
	7.Â€Acknowledgements
	8.Â€References
	8.1.Â€Normative References
	8.2.Â€Informative References

	Appendix A.Â€ASN.1 module
	Authors' Addresses

